Netinfo Security ›› 2025, Vol. 25 ›› Issue (8): 1263-1275.doi: 10.3969/j.issn.1671-1122.2025.08.008
Previous Articles Next Articles
SUN Nan1,2, QIN Zhongyuan1,3(
), HU Aiqun1,3, LI Tao1,3
Received:2024-06-20
Online:2025-08-10
Published:2025-09-09
CLC Number:
SUN Nan, QIN Zhongyuan, HU Aiqun, LI Tao. Immune-Based Intrusion Detection Methods for Programmable Data Plane[J]. Netinfo Security, 2025, 25(8): 1263-1275.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.08.008
| [1] | CHAMOU D, TOUPAS P, KETZAKI E, et al. Intrusion Detection System Based on Network Traffic Using Deep Neural Networks[C]// IEEE. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks. New York: IEEE, 2019: 1-6. |
| [2] | KIM J, BENTLEY P J, AICKELIN U, et al. Immune System Approaches to Intrusion Detection-A Review[J]. Natural Computing, 2007, 6(4): 413-466. |
| [3] | LI Tao, HU Aiqun, FANG Lanting. Bionic Control Mechanism Based Research of Endogenous Immune Architecture for Information System[J]. Journal of Cyber Security, 2022, 7(2): 87-100. |
| [4] | GONG Feili. Medical Immunology[M]. Beijing: Science Press, 2012. |
| 龚非力. 医学免疫学[M]. 北京: 科学出版社, 2012. | |
| [5] | SONG C, PARK Y, GOLANI K, et al. Machine-Learning Based Threat-Aware System in Software Defined Networks[C]// IEEE. 2017 26th International Conference on Computer Communication and Networks (ICCCN). New York: IEEE, 2017: 1-9. |
| [6] | SANTOS D S A, WICKBOLDT J A, GRANVILLE L Z, et al. ATLANTIC:A Framework for Anomaly Traffic Detection, Classification, and Mitigation in SDN[C]// IEEE. NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium. New York: IEEE, 2016: 27-35. |
| [7] | CHEN Zhuo, JIANG Fu, CHENG Yijun, et al. XGBoost Classifier for DDoS Attack Detection and Analysis in SDN-Based Cloud[C]// IEEE. 2018 IEEE International Conference on Big Data and Smart Computing. New York: IEEE, 2018: 251-256. |
| [8] | SWAMI R, DAVE M, RANGA V. Voting-Based Intrusion Detection Framework for Securing Software-Defined Networks[J]. Concurrency and Computation: Practice and Experience, 2020, 32(24): 1-16. |
| [9] | ELSAYED R A, HAMADA R A, ABDALLA M I, et al. Securing IoT and SDN Systems Using Deep-Learning Based Automatic Intrusion Detection[EB/OL]. (2023-03-03)[2024-06-10]. https://doi.org/10.1016/j.asej.2023.102211. |
| [10] | AL R M, JAVEED D, KHAN M T, et al. Cyber Threats Detection in Smart Environments Using SDN-Enabled DNN-LSTM Hybrid Framework[J]. IEEE Access, 2022, 10: 53015-53026. |
| [11] | KRANTHI S, KANCHANA M, SUNEETHA M. A Study of IDS-Based Software-Defined Networking by Using Machine Learning Concept[EB/OL]. (2022-02-08)[2024-06-10]. https://doi.org/10.1007/978-981-16-5689-7_6. |
| [12] | HAIDER S, AKHUNZADA A, MUSTAFA I, et al. A Deep CNN Ensemble Framework for Efficient DDoS Attack Detection in Software Defined Networks[J]. IEEE Access, 2020, 8: 53972-53983. |
| [13] |
LI Jiaqi, ZHAO Zhifeng, LI Rongpeng, et al. AI-Based Two-Stage Intrusion Detection for Software Defined IoT Networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 2093-2102.
doi: 10.1109/JIOT.2018.2883344 |
| [14] | BARRADAS D, SANTOS N, RODRIGUES L, et al. FlowLens: Enabling Efficient Flow Classification for ML-Based Network Security Applications[EB/OL]. (2021-02-21)[2024-06-10]. https://www.ndss-symposium.org/wp-content/uploads/ndss2021_7C-2_24067_paper.pdf. |
| [15] | XIONG Zhaoqi, ZILBERMAN N. Do Switches Dream of Machine Learning? Toward In-Network Classification[C]// ACM. The 18th ACM Workshop on Hot Topics in Networks. New York: ACM, 2019: 25-33. |
| [16] | XAVIER B M, GUIMARAES R S, COMARELA G, et al. Programmable Switches for In-Networking Classification[C]// IEEE. IEEE INFOCOM 2021-IEEE Conference on Computer Communications. New York: IEEE, 2021: 1-10. |
| [17] | LUO Junming, LIU Waixi, TAN Miaoquan, et al. Binary Neural Network with P4 on Programmable Data Plane[C]// IEEE. 2022 18th International Conference on Mobility, Sensing and Networking. New York: IEEE, 2022: 960-965. |
| [18] | ZHENG Changgang, XIONG Zhaoqi, BUI T T, et al. IIsy: Practical In-Network Classification[EB/OL]. (2022-06-19)[2024-06-10]. https://arxiv.org/abs/2205.08243. |
| [19] | Canadian Institute for Cybersecurity. CIC-IDS-2017 Dataset[EB/OL]. [2024-06-10]. https://www.unb.ca/cic/datasets/ids-2017.html. |
| [20] | XAVIER B M, SILVA G R, COMARELA G, et al. MAP4: A Pragmatic Framework for In-Network Machine Learning Traffic Classification[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4176-4188. |
| [21] | LI Yu. Research on Internet Intrusion Detection Technology Based on Deep Learning[D]. Chengdu: University of Electronic Science and Technology of China, 2023. |
| 李宇. 基于深度学习的互联网入侵检测技术研究[D]. 成都: 电子科技大学, 2023. | |
| [22] | LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A. Application of Deep Reinforcement Learning to Intrusion Detection for Supervised Problems[EB/OL]. (2019-09-18)[2024-06-10]. https://doi.org/10.1016/j.eswa.2019.112963. |
| [23] | ELSAYED M S, LE-KHAC N A, JURCUT A D. InSDN: A Novel SDN Intrusion Dataset[J]. IEEE Access, 2020, 8: 165263-165284. |
| [24] | XU Yuhua, SUN Zhixin. Research Development of Abnormal Traffic Detection in Software Defined Networking[J]. Journal of Software, 2020, 31(1): 183-207. |
| 徐玉华, 孙知信. 软件定义网络中的异常流量检测研究进展[J]. 软件学报, 2020, 31(1): 183-207. | |
| [25] | YANG Yintan. Research on SDN Intrusion Detection Technology Based on Convolutional Neural Network[D]. Xi'an: Xidian University, 2019. |
| 杨垠坦. 基于卷积神经网络的SDN入侵检测技术研究[D]. 西安: 西安电子科技大学, 2019. | |
| [26] | KRISHNAN A S, SIVALINGAM K M, SHAMI G, et al. Flow Classification for Network Security Using P4-Based Programmable Data Plane Switches[C]// IEEE. 2023 IEEE 9th International Conference on Network Softwarization. New York: IEEE, 2023: 374-379. |
| [27] | LI Yuliang, MIAO Rui, KIM C, et al. FlowRadar: A Better NetFlow for Data Centers[EB/OL]. (2019-09-18)[2024-06-10]. https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang. |
| [1] | CAO Yue, FANG Boying, WEI Gaoda, LI Jinyu, YANG Yang, PENG Tao. Compatibility Evaluation and Optimization of CAN Bus Intrusion Detection Systems in In-Vehicle Ethernet Environment [J]. Netinfo Security, 2025, 25(8): 1175-1195. |
| [2] | JIN Zhigang, LI Zimeng, CHEN Xuyang, LIU Zepei. Review of Network Intrusion Detection System for Unbalanced Data [J]. Netinfo Security, 2025, 25(8): 1240-1253. |
| [3] | XUN Yijie, CUI Jiarong, MAO Bomin, QIN Junman. Intrusion Detection System for the Controller Area Network Bus of Intelligent Vehicles Based on Federated Learning [J]. Netinfo Security, 2025, 25(6): 872-888. |
| [4] | JIN Zengwang, JIANG Lingyang, DING Junyi, ZHANG Huixiang, ZHAO Bo, FANG Pengfei. A Review of Research on Industrial Control System Security [J]. Netinfo Security, 2025, 25(3): 341-363. |
| [5] | LIU Chenfei, WAN Liang. CAN Bus Intrusion Detection Method Based on Spatio-Temporal Graph Neural Networks [J]. Netinfo Security, 2025, 25(3): 478-493. |
| [6] | LIU Lianhai, LI Huiye, MAO Donghui. CBAM-CNN Network-Based Intrusion Detection Method Using Image Convex Hull Features [J]. Netinfo Security, 2024, 24(9): 1422-1431. |
| [7] | ZHANG Hao, XIE Dazhi, HU Yunsheng, YE Junwei. A Review of Network Anomaly Detection Based on Semi-Supervised Learning [J]. Netinfo Security, 2024, 24(4): 491-508. |
| [8] | JIANG Rong, LIU Haitian, LIU Cong. Unsupervised Network Intrusion Detection Method Based on Ensemble Learning [J]. Netinfo Security, 2024, 24(3): 411-426. |
| [9] | FENG Guangsheng, JIANG Shunpeng, HU Xianlang, MA Mingyu. New Research Progress on Intrusion Detection Techniques for the Internet of Things [J]. Netinfo Security, 2024, 24(2): 167-178. |
| [10] | JIN Zhigang, DING Yu, WU Xiaodong. Federated Intrusion Detection Algorithm with Bilateral Correction Merging Gradient Difference [J]. Netinfo Security, 2024, 24(2): 293-302. |
| [11] | SUN Hongzhe, WANG Jian, WANG Peng, AN Yulong. Network Intrusion Detection Method Based on Attention-BiTCN [J]. Netinfo Security, 2024, 24(2): 309-318. |
| [12] | JIN Zhigang, CHEN Xuyang, WU Xiaodong, LIU Kai. A Review of Incremental Intrusion Detection [J]. Netinfo Security, 2024, 24(12): 1819-1830. |
| [13] | SHEN Hua, TIAN Chen, GUO Sensen, MU Zhiying. Research on Adversarial Machine Learning-Based Network Intrusion Detection Method [J]. Netinfo Security, 2023, 23(8): 66-75. |
| [14] | PENG Hanzhong, ZHANG Zhujun, YAN Liyue, HU Chenglin. Research on Intrusion Detection Mechanism Optimization Based on Federated Learning Aggregation Algorithm under Consortium Chain [J]. Netinfo Security, 2023, 23(8): 76-85. |
| [15] | LIU Changjie, SHI Runhua. A Smart Grid Intrusion Detection Model for Secure and Efficient Federated Learning [J]. Netinfo Security, 2023, 23(4): 90-101. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||