| [1] |
SUTTON R S, BARTO A G. Reinforcement Learning: An Introduction[J]. Robotica, 1999, 17(2): 229-235.
|
| [2] |
YU Kai, JIA Lei, CHEN Yuqiang, et al. Deep Learning: Yesterday, Today, and Tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
|
| [3] |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the Game of Go with Deep Neural Networks and Tree Search[J]. Nature, 2016, 529(7587): 484-489.
|
| [4] |
ARKIN B, STENDER S, MCGRAW G. Software Penetration Testing[J]. IEEE Security & Privacy, 2005, 3(1): 84-87.
|
| [5] |
SINGH N, MEHERHOMJI V, CHANDAVARKAR B R. Automated Versus Manual Approach of Web Application Penetration Testing[C]// IEEE. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). New York: IEEE, 2020: 1-6.
|
| [6] |
STEFINKO Y, PISKOZUB A, BANAKH R. Manual and Automated Penetration Testing. Benefits and Drawbacks. Modern Tendency[C]// IEEE. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). New York: IEEE, 2016: 488-491.
|
| [7] |
ABU-DABASEH F, ALSHAMMARI E. Automated Penetration Testing: An Overview[EB/OL]. (2018-05-28)[2024-08-10]. https://doi.org/10.5121/CSIT.2018.80610.
|
| [8] |
MCKINNEL D R, DARGAHI T, DEHGHANTANHA A, et al. A Systematic Literature Review and Meta-Analysis on Artificial Intelligence in Penetration Testing and Vulnerability AssesSment[J]. Computers & Electrical Engineering, 2019, 75: 175-188.
|
| [9] |
POLATIDIS N, PAVLIDIS M, MOURATIDIS H. Cyber-Attack Path Discovery in a Dynamic Supply Chain Maritime Risk Management System[J]. Computer Standards & Interfaces, 2018, 56: 74-82.
|
| [10] |
HU Tairan, ZHOU Tianyang, ZANG Yichao, et al. APU-D* Lite: Attack Planning under Uncertainty Based on D* Lite[J]. CMC-Computers Materials & Continua, 2020, 65(2): 1795-1807.
|
| [11] |
SCHWARTZ J, KURNIAWATI H. Autonomous Penetration Testing Using Reinforcement Learning[EB/OL]. (2019-05-15)[2024-08-08]. https://doi.org/10.48550/arXiv.1905.05965.
|
| [12] |
ZHOU Shicheng, LIU Jingju, ZHONG Xiaofeng, et al. Intelligent Penetration Testing Path Discovery Based on Deep Reinforcement Learning[J]. Computer Science, 2021, 48(7): 40-46.
doi: 10.11896/jsjkx.210400057
|
| [13] |
NGUYEN H V, TEERAKANOK S, INOMATA A, et al. The Proposal of Double Agent Architecture Using Actor-Critic Algorithm for Penetration Testing[C]// INSTICC. 2021 7th International Conference on Information Systems Security and Privacy (ICISSP). Setubal: Science and Technology Publications, Lda,2021: 440-449.
|
| [14] |
ZENNARO F M, ERDODI L. Modelling Penetration Testing with Reinforcement Learning Using Capture-the-Flag Challenges: Trade-Offs between Model-Free Learning and a Priori Knowledge[J]. IET Information Security, 2023, 17(3): 441-457.
|
| [15] |
GAO Wenlong, ZHOU Tianyang, ZHAO Ziheng, et al. Network Attack Path Planning Method Based on Deep Reinforcement Learning[J]. Journal of Cyber Security, 2022, 7(5): 65-78.
|
|
高文龙, 周天阳, 赵子恒, 等. 基于深度强化学习的网络攻击路径规划方法[J]. 信息安全学报, 2022, 7(5): 65-78.
|
| [16] |
ZENG Qingwei, ZHANG Guomin, XING Changyou, et al. Intelligent Attack Path Discovery Based on Heuristic Reward Shaping Method[J]. Journal of Cyber Security, 2024, 9(3): 44-58.
|
|
曾庆伟, 张国敏, 邢长友, 等. 基于启发式奖赏塑形方法的智能化攻击路径发现[J]. 信息安全学报, 2024, 9(3): 44-58.
|
| [17] |
ZHANG Guomin, ZHANG Shaoyong, ZHANG Jinwei. Discovery and Optimization Method of Attack Paths Based on PPO Algorithm[J]. Netinfo Security, 2023, 23(9): 47-57.
|
|
张国敏, 张少勇, 张津威. 基于PPO算法的攻击路径发现与寻优方法[J]. 信息网络安全, 2023, 23(9):47-57.
|
| [18] |
WANG Yongjie. Research on the Development of Dynamic Defense Technology[J]. Secrecy Science and Technology, 2020 (6): 9-14.
|
|
王永杰. 网络动态防御技术发展概况研究[J]. 保密科学技术, 2020 (6): 9-14.
|
| [19] |
JAJODIA S, GHOSH A K, SWARUP V, et al. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats[M]. New York: Springer, 2011.
|
| [20] |
WU Jiangxing. Research on Cyber Mimic Defense[J]. Journal of Cyber Security, 2016, 1(4): 1-10.
|
|
邬江兴. 网络空间拟态防御研究[J]. 信息安全学报, 2016, 1(4):1-10.
|
| [21] |
TORQUATO M, MACIEL P, VIEIRA M. Security and Availability Modeling of VM Migration as Moving Target Defense[C]// IEEE. 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC). New York: IEEE, 2020: 50-59.
|
| [22] |
WANG Jiang, ZHANG Zheng, MA Bolin, et al. Research on SSTI Attack Defense Technology Based on Instruction Set Randomization[C]// ACM. 2021 2nd International Conference on Artificial Intelligence and Information Systems. New York: ACM,2021: 1-5.
|
| [23] |
POSCHINGER R, RODDAY N, LABACA-CASTRO R, et al. Openmtd: A Framework for Efficient Network-Level MTD Evaluation[C]// ACM. Proceedings of the 7th ACM Workshop on Moving Target Defense. New York: ACM, 2020: 31-41.
|
| [24] |
HYDER M F, FAROOQ M U, AHMED U, et al. Towards Enhancing the Endpoint Security Using Moving Target Defense (Shuffle-Based Approach) in Software Defined Networking[J]. Engineering, Technology & Applied Science Research, 2021, 11(4): 7483-7488.
|
| [25] |
LIU Yaqun, ZHAO Jinlong, ZHANG Guomin, et al. Netobfu: A Lightweight and Efficient Network Topology Obfuscation Defense Scheme[EB/OL]. [2024-08-08]. https://doi.org/10.1016/j.cose.2021.102447.
|