Netinfo Security ›› 2023, Vol. 23 ›› Issue (7): 64-73.doi: 10.3969/j.issn.1671-1122.2023.07.007
Previous Articles Next Articles
LI Chenwei1, ZHANG Hengwei1(), GAO Wei2, YANG Bo1
Received:
2023-02-10
Online:
2023-07-10
Published:
2023-07-14
CLC Number:
LI Chenwei, ZHANG Hengwei, GAO Wei, YANG Bo. Transferable Image Adversarial Attack Method with AdaN Adaptive Gradient Optimizer[J]. Netinfo Security, 2023, 23(7): 64-73.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.07.007
生成模型 | 攻击方法 | Inc-v3 | Inc-v4 | IncRes-v2 | Res-101 | Inc-v3-ens3 | Inc-v3-ens4 | IncRes-v2-ens |
---|---|---|---|---|---|---|---|---|
Inc-v3 | I-FGSM | 99.9%* | 22.8% | 19.9% | 18.1% | 7.5% | 6.4% | 4.1% |
MI-FGSM | 99.9%* | 48.8% | 48.0% | 39.9% | 15.1% | 15.2% | 7.8% | |
NI-FGSM | 100%* | 55.1% | 50.8% | 44.2% | 14.6% | 14.0% | 7.3% | |
ANI-FGSM | 100%* | 52.7% | 48.7% | 42.9% | 16.4% | 16.5% | 8.1% | |
Inc-v4 | I-FGSM | 35.8% | 99.9%* | 24.7% | 21.9% | 7.8% | 6.8% | 4.9% |
MI-FGSM | 65.6% | 99.9%* | 54.9% | 47.7% | 19.8% | 17.4% | 9.6% | |
NI-FGSM | 69.6% | 100%* | 58.4% | 49.5% | 17.8% | 16.8% | 7.9% | |
ANI-FGSM | 69.2% | 99.9%* | 57.0% | 48.3% | 21.6% | 18.0% | 11.0% | |
IncRes-v2 | I-FGSM | 37.8% | 20.8% | 99.6%* | 25.9% | 8.9% | 7.8% | 5.8% |
MI-FGSM | 69.8% | 62.1% | 99.5%* | 52.1% | 26.1% | 20.9% | 15.7% | |
NI-FGSM | 70.7% | 61.9% | 99.7%* | 52.3% | 22.2% | 18.9% | 11.9% | |
ANI-FGSM | 68.3% | 61.1% | 99.6%* | 52.7% | 26.9% | 24.2% | 19.4% | |
Res-101 | I-FGSM | 26.7% | 22.7% | 21.2% | 98.2%* | 9.3% | 8.9% | 6.2% |
MI-FGSM | 53.6% | 48.9% | 44.7% | 98.2%* | 22.1% | 21.7% | 12.9% | |
NI-FGSM | 59.3% | 54.8% | 52.4% | 98.6%* | 23.2% | 18.6% | 11.2% | |
ANI-FGSM | 60.7% | 55.3% | 50.6% | 98.8%* | 25.3% | 23.5% | 15.6% |
[1] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
doi: 10.1145/3065386 URL |
[2] | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: A Unified Embedding for Face Recognition and Clustering[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 815-823. |
[3] | SZEGEDY C, TOSHEV A, ERHAN D. Deep Neural Networks for Object Detection[EB/OL]. (2013-12-05) [2023-01-13]. https://arxiv.org/abs/1611.08588. |
[4] | GIDARIS S, KOMODAKIS N. Object Detection via a Multi-Region and Semantic Segmentation-Aware CNN Model[C]// IEEE. Proceedings of the IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1134-1142. |
[5] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Identity Mappings in Deep Residual Networks[C]// Springer. European Conference on Computer Vision. Berlin:Springer, 2016: 630-645. |
[6] | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing Properties of Neural Networks[EB/OL]. (2013-12-21) [2023-01-13]. https://arxiv.org/abs/1312.6199. |
[7] | HENDRYCKS D, ZHAO K, BASART S, et al. Natural Adversarial Examples[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 15262-15271. |
[8] | TRAMÈR F, KURAKIN A, PAPERNOT N, et al. Ensemble Adversarial Training: Attacks and Defenses[EB/OL]. (2017-05-19) [2023-01-13]. https://arxiv.org/abs/1705.07204. |
[9] | PAPERNOT N, MCDANIEL P, GOODFELLOW I, et al. Practical Black-Box Attacks Against Machine Learning[C]// ACM. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. New York: ACM, 2017: 506-519. |
[10] | BAI Yang, ZENG Yuyuan, JIANG Yong, et al. Improving Query Efficiency of Black-Box Adversarial Attack[C]// Springer. European Conference on Computer Vision. Berlin:Springer, 2020: 101-116. |
[11] | INKAWHICH N, LIANG K J, CARIN L, et al. Transferable Perturbations of Deep Feature Distributions[EB/OL]. (2020-04-27) [2023-01-13]. https://arxiv.org/abs/2004.12519. |
[12] |
CHEN Mengxuan, ZHANG Zhenyong, JI Shouling, et al. Survey of Research Progress on Adversarial Examples in Images[J]. Computer Science, 2022, 49(2): 92-106.
doi: 10.11896/jsjkx.210800087 |
陈梦轩, 张振永, 纪守领, 等. 图像对抗样本研究综述[J]. 计算机科学, 2022, 49(2): 92-106.
doi: 10.11896/jsjkx.210800087 |
|
[13] | BIGGIO B, CORONA I, MAIORCA D, et al. Evasion Attacks Against Machine Learning at Test Time[C]// Springer. Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin:Springer, 2013: 387-402. |
[14] | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and Harnessing Adversarial Examples[EB/OL]. (2014-12-20) [2023-01-13]. https://arxiv.org/abs/1412.6572. |
[15] | CARLINI N, WAGNER D. Towards Evaluating the Robustness of Neural Networks[C]// IEEE. 2017 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2017: 39-57. |
[16] | KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial Examples in the Physical World[EB/OL]. (2016-07-08) [2023-01-13]. https://arxiv.org/abs/1607.02533. |
[17] | DONG Yinpeng, LIAO Fangzhou, PANG Tianyu, et al. Boosting Adversarial Attacks with Momentum[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 9185-9193. |
[18] | LIN Jiadong, SONG Chuanbiao, HE Kun, et al. Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks[EB/OL]. (2019-08-17) [2023-01-13]. https://arxiv.org/abs/1908.06281. |
[19] | XIE Xingyu, ZHOU Pan, LI Huan, et al. Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[EB/OL]. (2022-08-13) [2023-01-13]. https://arxiv.org/abs/2208.06677. |
[20] | XIE Cihang, ZHANG Zhishuai, ZHOU Yuyin, et al. Improving Transferability of Adversarial Examples with Input Diversity[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 2730-2739. |
[21] | NIELSEN M A. Neural Networks and Deep Learning[M]. San Francisco: Determination Press, 2015. |
[22] | RUDER S. An Overview of Gradient Descent Optimization Algorithms[EB/OL]. (2016-09-15) [2023-01-13]. https://arxiv.org/abs/1609.04747. |
[23] |
SHORTEN C, KHOSHGOFTAAR T M. A Survey on Image Data Augmentation for Deep Learning[J]. Journal of Big Data, 2019, 6(1): 1-48.
doi: 10.1186/s40537-018-0162-3 |
[24] | BÜHLMANN P. Bagging, Boosting and Ensemble Methods[M]. Berlin: Springer, 2012. |
[25] | LIU Yanpei, CHEN Xinyun, LIU Chang, et al. Delving into Transferable Adversarial Examples and Black-Box Attacks[EB/OL]. (2016-11-08) [2023-01-13]. https://arxiv.org/abs/1611.02770. |
[26] | HASHEMI A S, BÄR A, MOZAFFARI S, et al. Improving Transferability of Generated Universal Adversarial Perturbations for Image Classification and Segmentation[C]// Springer. Deep Neural Networks and Data for Automated Driving. Berlin:Springer, 2022: 171-196. |
[27] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2818-2826. |
[28] | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning[C]// ACM. Thirty-First AAAI Conference on Artificial Intelligence. New York: ACM, 2017: 4278-4284. |
[1] | XU Chungen, XUE Shaokang, XU Lei, ZHANG Pan. Efficient Neural Network Inference Protocol Based on Secure Two-Party Computation [J]. Netinfo Security, 2023, 23(7): 22-30. |
[2] | YUAN Wenxin, CHEN Xingshu, ZHU Yi, ZENG Xuemei. HTTP Payload Covert Channel Detection Method Based on Deep Learning [J]. Netinfo Security, 2023, 23(7): 53-63. |
[3] | JIANG Yingzhao, CHEN Lei, YAN Qiao. Distributed Denial of Service Attack Detection Algorithm Based on Two-Channel Feature Fusion [J]. Netinfo Security, 2023, 23(7): 86-97. |
[4] | JIANG Zenghui, ZENG Weijun, CHEN Pu, WU Shitao. Review of Adversarial Samples for Modulation Recognition [J]. Netinfo Security, 2023, 23(6): 74-90. |
[5] | ZHAO Xiaolin, WANG Qiyao, ZHAO Bin, XUE Jingfeng. Research on Anonymous Traffic Classification Method Based on Machine Learning [J]. Netinfo Security, 2023, 23(5): 1-10. |
[6] | CHEN Zitong, JIA Peng, LIU Jiayong. Identification Method of Malicious Software Hidden Function Based on Siamese Architecture [J]. Netinfo Security, 2023, 23(5): 62-75. |
[7] | ZHAO Caidan, CHEN Jingqian, WU Zhiqiang. Automatic Modulation Recognition Algorithm Based on Multi-Channel Joint Learning [J]. Netinfo Security, 2023, 23(4): 20-29. |
[8] | ZHANG Yujian, LIU Daifu, TONG Fei. Reentrancy Vulnerability Detection in Smart Contracts Based on Local Graph Matching [J]. Netinfo Security, 2022, 22(8): 1-7. |
[9] | LIU Guangjie, DUAN Kun, ZHAI Jiangtao, QIN Jiayu. Mobile Traffic Application Recognition Based on Multi-Feature Fusion [J]. Netinfo Security, 2022, 22(7): 18-26. |
[10] | WANG Haoyang, LI Wei, PENG Siwei, QIN Yuanqing. An Intrusion Detection Method of Train Control System Based on Ensemble Learning [J]. Netinfo Security, 2022, 22(5): 46-53. |
[11] | HU Wei, ZHAO Wenlong, CHEN Lu, FU Wei. An Improved JSMA Algorithm against Sample Attack Based on Logits Vector [J]. Netinfo Security, 2022, 22(3): 62-69. |
[12] | ZHENG Yaohao, WANG Liming, YANG Jing. A Defense Method against Adversarial Attacks Based on Neural Architecture Search [J]. Netinfo Security, 2022, 22(3): 70-77. |
[13] | LIU Feng, YANG Chengyi, YU Xincheng, QI Jiayin. Spectral Graph Convolutional Neural Network for Decentralized Dual Differential Privacy [J]. Netinfo Security, 2022, 22(2): 39-46. |
[14] | LIN Faxin, ZHANG Jian. Design and Implementation of Abnormal Behavior Detection System for Virtualization Platform [J]. Netinfo Security, 2022, 22(11): 62-67. |
[15] | TONG Xin, JIN Bo, WANG Jingya, YANG Ying. A Multi-View and Multi-Task Learning Detection Method for Android Malware [J]. Netinfo Security, 2022, 22(10): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||