Netinfo Security ›› 2024, Vol. 24 ›› Issue (4): 491-508.doi: 10.3969/j.issn.1671-1122.2024.04.001
Previous Articles Next Articles
ZHANG Hao1,2(), XIE Dazhi1,2, HU Yunsheng1,2, YE Junwei1,2
Received:
2023-10-26
Online:
2024-04-10
Published:
2024-05-16
CLC Number:
ZHANG Hao, XIE Dazhi, HU Yunsheng, YE Junwei. A Review of Network Anomaly Detection Based on Semi-Supervised Learning[J]. Netinfo Security, 2024, 24(4): 491-508.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.04.001
应用 场景 | 时间 | 数据集 | 攻击类型 |
---|---|---|---|
传统 网络 | 1999 | KDD CUP99[ | DoS,Probe,U2R,R2L |
2004 | NSL-KDD[ | DoS,Probe,U2R,R2L | |
2015 | UNSW-NB15[ | Fuzzers,Analysis,Backdoors,DoS,Exploits,Generic,Reconnaissance,Shellcode,Worms | |
2017 | CIC-IDS2017[ | Brute Force,Heartbleed,Botnet,DoS,DDoS,Web Attack,Infiltration | |
2018 | CSE-CIC-IDS2018[ | Brute Force,Heartbleed,Botnet,DoS,DDoS,Web Attack,Infiltration | |
2011 | Kyoto2006+[ | Attack Session | |
2012 | ISCX-2012[ | Brute Force,Infiltration,DoS,DDoS | |
2018 | CTU[ | Sathurbot,Trickster,TrickBot,Dridex,WebCompanion,Viaxmr,Trojan,CoinMiner,HTBot,Ursnif | |
物联网 | 2020 | TON_IoT[ | Scanning,DoS,DDoS,Ransomware,Backdoor,Injection,XSS,Password,MITM |
2018 | N-BaIoT[ | BASHLITE Attacks, Mirai Attacks | |
2018 | Kitsune[ | Active Wiretap,ARP MitM,Fuzzing,Mirai Botnet,OS Scan,SSDP Flood,SSL Renegotiation,SYN DoS,Video Injection | |
2015 | SWaT[ | False Data Injection | |
2014 | SCADA[ | Reconnaissance,Response Injection,Command Injection,DoS | |
2019 | Car Hacking[ | DoS,Fuzzy,Gear Spoofing,RPM Spoofing |
方案 | 网络 类型 | 方法 | 数据集 | 主要评价指标 |
---|---|---|---|---|
文献[ | 传统 网络 | 采用半监督聚类方法进行特征选择 | UNSW-NB15 | Accuracy=98.81%、FPR=0.78%、DR=98.88% |
文献[ | 传统 网络 | 半监督K-Means算法 | CIC-IDS2017 | Accuracy=79.60% |
文献[ | 传统 网络 | 半监督加权K-Means算法 | DARPA、CAIDA、 CIC-IDS2017、real-world dataset | DARPA: FPR=1.40%、Recall=99.68% CAIDA: FPR=0%、Recall=99.00% CICIDS: FPR=28.72%、Recall=98.86% real-world dataset: FPR=0.20%、Recall=99.75% |
文献[ | 传统 网络 | 半监督多层 聚类模型 | NSL-KDD、Kyoto2006+ | NSL-KDD: Accuracy=99.59%、DR=99.51%、FAR=0.34% Kyoto2006+: Accuracy=99.39%、DR=99.72%、FAR=0.89% |
方案 | 网络 类型 | 方法 | 数据集 | 主要评价指标 |
---|---|---|---|---|
文献[ | 传统 网络 | 一种基于自训练和标准增强的半监督学习方法 | NSL-KDD | Accuracy=82.87% |
文献[ | 传统 网络 | 自训练支持向量机 | NSL-KDD、KDD CUP99 | NSL-KDD: Accuracy=99.6%、Precision=99%、Recall=99%、F1-Score=99% KDD corrected: Accuracy=99.11%、Precision=98%、Recall=99%、F1-Score=99% |
文献[ | 传统 网络 | 自训练混合决策树 | CIC-IDS2017、 Kitsune、 Stratosphere IPS 5a、Stratosphere IPS 5b | CIC-IDS2017: Precision=65.0%、 Recall=83.3%:、 F1-Score=68.5% Kitsune: Precision=86.1%、 Recall=88.3%、 F1-Score=85.9% Stratosphere IPS 5a: Precision=79.1%、 Recall=71.5%、 F1-Score=74.2% Stratosphere IPS 5b: Precision=80.2%、 Recall=72.0%、 F1-Score=74.9% |
文献[ | 物联网 | 基于分歧的半监督学习 | KDD CUP99、Real-world IoT network environment | KDD CUP99: Error rate=10.5%、 Hit rate=92.48% Real-world IoT network environment: Error rate=7.3%、Hit rate=94.23% |
文献[ | 传统 网络 | 改进的基于分层采样的Tri-LightGBM | UNSW-NB15、 CIC-IDS2017 | UNSW-NB15: Accuracy=94.48%、Recall=94.25%、Precision=93.57%、F-measure=93.91%、FPR=5.01% CIC-IDS2017: Accuracy=98.04%、Recall=97.85%、Precision=99.06%、F-measure=98.44%、FPR=1.61% |
文献[ | 物联网 | 标签扩散 算法 | TON_IoT | Accuracy=99.84% |
文献[ | 智能 电网 | 标签传播 算法 | CER dataset | Attack-1: Accuracy=98.5%、Precision=89.0%、 F1-Score=97.0% Attack-2: Accuracy=75.7%、Precision=69.23%、 F1-Score=89.5% |
方案 | 网络类型 | 方法 | 数据集 | 主要评价指标 |
---|---|---|---|---|
文献[ | 传统网络 | 半监督自动编码器 | NSL-KDD、KDD CUP99 | NSL-KDD: Accuracy=97.2%、DR=91.6%、Precision=96.1%、FPR=0.8%、 F1-Score=93.5% KDD CUP99: Accuracy=96.8%、DR=90.5%、Precision=95.2%、FPR=0.9%、 F1-Score=93.3% |
文献[ | 传统网络 | 半监督堆叠稀疏 自编码器 | A network section from Universidad Del Cauca | Accuracy=89.09%、F-measure=89.05%、Precision=89.51%、Recall=88.35% |
文献[ | 传统网络 | 半监督堆叠稀疏 自编码器 | UNSW-NB15 | Accuracy=93.5%、 F1-Score=94.5% |
文献[ | 传统网络 | 半监督判别自编码器 | CSE-CIC-IDS2018 | Accuracy=81.4%、Precision=82.1%、Recall=82.0%、 F1-Score=81.9% |
文献[ | 传统网络 | 半监督重构异常检测框架MANomaly | NSL-KDD、UNSW-NB15 | NSL-KDD: Accuracy=92.74% UNSW-NB15: Accuracy=92.07% |
方案 | 网络类型 | 方法 | 数据集 | 主要评价指标 |
---|---|---|---|---|
文献[ | 传统网络 | 半监督对抗自编码器 | NSL-KDD | Accuracy=83.11% |
文献[ | 控制器局域网 | 半监督卷积对抗 自编码器 | Car hacking | Error rate=0.1%、Recall=99.72%、Precision=99.97%、 F1-Score=99.84% |
文献[ | 传统网络 | 半监督对抗自编码器 | NSL-KDD | Accuracy=87.89%、Precision=90.06%、Recall=86.76%、F1-Score=88.34%、FPR=9.94% |
文献[ | 传统网络 | 半监督对抗自编码器 | CSE-CIC-IDS2018、UNSW-NB15 | CSE-CIC-IDS2018: Accuracy=98%、Recall=88.3%、Precision=94.7%、 F1-Score=91.4% UNSW-NB15: Accuracy=98.5%、Recall=75%、Precision=85.4%、 F1-Score=80% |
方案 | 网络类型 | 方法 | 数据集 | 主要评价指标 |
---|---|---|---|---|
文献[ | 传统网络 | 一种混合半监督技术,将主动学习支持向量机结合模糊C均值聚类结合 | NSL-KDD | Detection rate=99.6% |
文献[ | 传统网络 | 一种基于主动半监督学习的网络异常检测算法 | CTU、CIC-IDS2017 | Accuracy=90.97%、Precision=90.85、Recall=90.91%、 F1-score=90.88% CIC-IDS2017: Accuracy=99.36%、Precision=90.85%、Recall=90.91%、 F1-score=90.88% |
文献[ | 信息物理系统 | 一种基于集成半监督主动学习的异常检测方法 | NSL-KDD、SWaT | NSL-KDD: Precision=99.02%、Recall=99.03%、 F1-score=99.01% SWaT: Precision=99.02%、Recall=99.03%、 F1-score=99.01% |
方案 | 网络类型 | 方法 | 数据集 | 主要评价指标 |
---|---|---|---|---|
文献[ | 传统网络 | 一种半监督联邦学习的网络异常检测方法 | UNSW-NB15 | Accuracy=84.32%、Precision=86.19%、Recall=83.10%、 F1-score=83.63% |
文献[ | 工业 物联网 | 一种用于工业物联网攻击检测的半监督联邦学习方法 | SCADA | Accuracy=95.84%、Precision=97.89%、Recall=87.15% |
文献[ | 物联网 | 一种基于半监督联邦学习的网络异常检测方法 | N-BaIoT | Accuracy=86.70%、F1-score=84.95%、Recall=86.70%、Precision=91.73% |
文献[ | 物联网 | 一种基于知识蒸馏的半监督联邦学习的网络异常 检测方法 | N-BaIoT | Recall=87.40%、Precision=86.50%、 F1-score=92.33% |
文献[ | 传统网络 | 一种新的联邦学习支持的半监督主动学习框架 | CSE-CIC-IDS2018 | Accuracy=95%、S2C cost=42%、C2S cost=53% |
[1] | AHMETOGLU H, DAS R. A Comprehensive Review on Detection of Cyber-Attacks: Data Sets, Methods, Challenges, and Future Research Directions[EB/OL]. (2022-09-20)[2023-09-03]. https://doi.org/10.1016/j.iot.2022.100615. |
[2] | ABDULGANIYU O H, AIT T, SAHEED Y K. A Systematic Literature Review for Network Intrusion Detection System (IDS)[J]. International Journal of Information Security, 2023, 22(5): 1125-1162. |
[3] | DEORE B, BHOSALE S. Hybrid Optimization Enabled Robust CNN-LSTM Technique for Network Intrusion Detection[J]. IEEE Access, 2022, 10: 65611-65622. |
[4] | REN Huajuan, TANG Yonghe, DONG Weiyu, et al. DUEN: Dynamic Ensemble Handling Class Imbalance in Network Intrusion Detection[EB/OL]. (2023-05-13)[2023-09-03]. https://doi.org/10.1016/j.eswa.2023.120420. |
[5] | MAZUMDER M, KADIR M, SHARMIN S, et al. cFEM: A Cluster Based Feature Extraction Method for Network Intrusion Detection[J]. International Journal of Information Security, 2023, 22(5): 1355-1369. |
[6] | HAMMAD M, HEWAHI N, ELMEDANY W, et al. MMM-RF: A Novel High Accuracy Multinomial Mixture Model for Network Intrusion Detection Systems[EB/OL]. (2022-05-26)[2023-09-03]. https://doi.org/10.1016/j.cose.2022.102777. |
[7] | WU Zhijun, GAO Pan, CUI Lei, et al. An Incremental Learning Method Based on Dynamic Ensemble RVM for Intrusion Detection[J]. IEEE Transactions on Network and Service Management, 2021, 19(1): 671-685. |
[8] |
ZHANG Shipeng, LI Yongzhong, DU Xiangtong. Intrusion Detection Model Based on Semi-Supervised Learning and Three-Way Decision[J]. Journal of Computer Applications, 2021, 41(9): 2602-2608.
doi: 10.11772/j.issn.1001-9081.2020111883 |
张师鹏, 李永忠, 杜祥通. 基于半监督学习和三支决策的入侵检测模型[J]. 计算机应用, 2021, 41(9): 2602-2608.
doi: 10.11772/j.issn.1001-9081.2020111883 |
|
[9] | THAKKAR A, LOHIYA R. Fusion of Statistical Importance for Feature Selection in Deep Neural Network-Based Intrusion Detection System[J]. Information Fusion, 2023, 90: 353-363. |
[10] | FITRIANI S, MANDALA S, MURTI M. Review of Semi-Supervised Method For Intrusion Detection System[C]// IEEE. Asia Pacific Conference on Multimedia and Broadcasting (APMediaCast). New York: IEEE, 2016: 36-41. |
[11] |
PANG Xinglong, ZHU Guosheng. Survey of Network Traffic Analysis Based on Semi Supervised Learning[J]. Computer Science, 2022, 49(6A): 544-554.
doi: 10.11896/jsjkx.210600131 |
庞兴龙, 朱国胜. 基于半监督学习的网络流量分析研究[J]. 计算机科学, 2022, 49(6A): 544-554.
doi: 10.11896/jsjkx.210600131 |
|
[12] | DUARTE J M, BERTON L. A Review of Semi-Supervised Learning for Text Classification[J]. Artificial Intelligence Review, 2023, 56(9): 9401-9469. |
[13] | DE V, THIERENS D. A Reliable Ensemble Based Approach to Semi-Supervised Learning[EB/OL]. (2021-01-14)[2023-09-03]. https://doi.org/10.1016/j.knosys.2021.106738. |
[14] | ZHANG Hao, CHEN Long, WEI Zhiqiang. Abnormal Traffic Detection Technology Based on Data Augmentation and Model Update[J]. Netinfo Security, 2020, 20(2): 66-74. |
张浩, 陈龙, 魏志强. 基于数据增强和模型更新的异常流量检测技术[J]. 信息网络安全, 2020, 20(2): 66-74. | |
[15] | JIAN Shijie, LU Zhigang, DU Dan, et al. Overview of Network Intrusion Detection Technology[J]. Journal of Cyber Security, 2020, 5(4): 96-122. |
蹇诗婕, 卢志刚, 杜丹, 等. 网络入侵检测技术综述[J]. 信息安全学报, 2020, 5(4): 96-122. | |
[16] | JAIN M, KAUR G, SAXENA V. A K-Means Clustering and SVM Based Hybrid Concept Drift Detection Technique for Network Anomaly Detection[EB/OL]. (2022-01-02)[2023-09-03]. https://doi.org/10.1016/j.eswa.2022.116510. |
[17] | KHAN A R, KASHIF M, JHAVERI R, et al. Deep Learning for Intrusion Detection and Security of Internet of Things (IoT): Current Analysis, Challenges, and Possible Solutions[EB/OL]. (2022-07-09)[2023-09-03]. https://doi.org/10.1155/2022/4016073. |
[18] | Information and Computer Science University of California. KDD Cup 1999 Data[EB/OL]. (1999-10-28)[2023-09-03]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. |
[19] | TAVALLAEE M, BAGHERI E, LU W, et al. A Detailed Analysis of the KDD Cup 99 Data Set[C]// IEEE. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. New York: IEEE, 2009: 1-6. |
[20] | MOUSTAFA N, SLAY J. UNSW-NB15: A Comprehensive Data Set for Network Intrusion Detection Systems (UNSW-NB15 Network Data Set)[C]// IEEE. 2015 Military Communications and Information Systems Conference (MilCIS). New York: IEEE, 2015: 1-6. |
[21] | SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization[C]// Springer. 4th International Conference on Information Systems Security and Privacy. Heidelberg: Springer, 2018: 108-116. |
[22] | LEEVY J L, KHOSHGOFTAAR T M. A Survey and Analysis of Intrusion Detection Models Based on CSE-CIC-IDS2018 Big Data[J]. Journal of Big Data, 2020, 7(1): 1-19. |
[23] | SONG J, TAKAKURA H, OKABE Y, et al. Statistical Analysis of Honeypot Data and Building of Kyoto 2006+ Dataset for NIDS Evaluation[C]// ACM. Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security. New York: ACM, 2011: 29-36. |
[24] | SHIRAVI A, SHIRAVI H, TAVALLAEE M, et al. Toward Developing a Systematic Approach to Generate Benchmark Datasets for Intrusion Detection[J]. Computers & Security, 2012, 31(3): 357-374. |
[25] | ZHANG Yong, CHEN Xu, JIN Lei, et al. Network Intrusion Detection: Based on Deep Hierarchical Network and Original Flow Data[J]. IEEE Access, 2019, 7: 37004-37016. |
[26] | ALSAEDI A, MOUSTAFA N, TARI Z, et al. TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems[J]. IEEE Access, 2020, 8: 165130-165150. |
[27] | MEIDAN Y, BOHADANA M, MATHOV Y, et al. N-BaIoT Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders[J]. IEEE Pervasive Computing, 2018, 17(3): 12-22. |
[28] | MIRSKY Y, DOITSHMAN T, ELOVICI Y, et al. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection[EB/OL]. (2018-05-27)[2023-09-03]. https://doi.org/10.48550/arXiv.1802.09089. |
[29] | GOH J, ADEPU S, JUNEJO K N, et al. A Dataset to Support Research in the Design of Secure Water Treatment Systems[C]// Springer. 11th International Conference on Critical Information Infrastructures Security. Heidelberg: Springer, 2017: 88-99. |
[30] | MORRIS T, GAO W. Industrial Control System Traffic Data Sets for Intrusion Detection Research[J]. IFIP Advances in Information and Communication Technology, 2014, 441: 65-78. |
[31] | SONG H M, WOO J, KIM H K. In-Vehicle Network Intrusion Detection Using Deep Convolutional Neural Network[EB/OL]. (2020-01-01)[2023-09-03]. https://doi.org/10.1016/j.vehcom.2019.100198. |
[32] | GUPTA N, JINDAL V, BEDI P. CSE-IDS: Using Cost-Sensitive Deep Learning and Ensemble Algorithms to Handle Class Imbalance in Network-Based Intrusion Detection Systems[EB/OL]. (2021-10-07)[2023-09-03]. https://doi.org/10.1016/j.cose.2021.102499. |
[33] | LIU Jingmei, GAO Yuanbo, HU Fengjie. A Fast Network Intrusion Detection System Using Adaptive Synthetic Oversampling and LightGBM[EB/OL]. (2021-04-17)[2023-09-03]. https://doi.org/10.1016/j.cose.2021.102289. |
[34] | SOLEYMANPOUR S, SADR H, SOLEIMANDARABI M. CSCNN: Cost-Sensitive Convolutional Neural Network for Encrypted Traffic Classification[J]. NEURAL PROCESSING LETTERS, 2021, 53: 3497-3523. |
[35] | JIA Weikuan, SUN Meili, LIAN Jian, et al. Feature Dimensionality Reduction: A Review[J]. Complex & Intelligent Systems, 2022, 8(3): 2663-2693. |
[36] | LI Xukui, CHEN Wei, ZHANG Qianru, et al. Building Auto-Encoder Intrusion Detection System Based on Random Forest Feature Selection[EB/OL]. (2020-04-29)[2023-09-03]. https://doi.org/10.1016/j.cose.2020.101851. |
[37] | MAZUMDER M, KADIR M, SHARMIN S, et al. CFEM: A Cluster Based Feature Extraction Method for Network Intrusion Detection[J]. International Journal of Information Security, 2023, 22(5): 1355-1369. |
[38] | NAZIR A, KHAN R. A Novel Combinatorial Optimization Based Feature Selection Method for Network Intrusion Detection[EB/OL]. (2020-12-31)[2023-09-03]. https://doi.org/10.1016/j.cose.2020.102164. |
[39] | JIA Weifeng, LI Jie, TONG Bin. Network Intrusion Detection Method Based on Semi-Supervised Dimensionality Reduction[J]. Computer Applications and Software, 2013, 30(10): 133-135. |
贾伟峰, 李杰, 童彬. 基于半监督降维技术的网络入侵检测方法[J]. 计算机应用与软件, 2013, 30(10): 133-135. | |
[40] | XIANG Zhiyang, XIAO Zhu, HUANG Yourong, et al. Unsupervised and Semi-Supervised Dimensionality Reduction with Self-Organizing Incremental Neural Network and Graph Similarity Constraints[C]// Springer. Advances in Knowledge Discovery and Data Mining. Heidelberg: Springer, 2016: 191-202. |
[41] | LI Jieling, ZHANG Hao, LIU Yanhua, et al. Semi-Supervised Machine Learning Framework for Network Intrusion Detection[J]. The Journal of Supercomputing, 2022, 78(11): 13122-13144. |
[42] |
QIN Yue, DING Shifei, WANG Lijuan, et al. Research Progress on Semi-Supervised Clustering[J]. Cognitive Computation, 2019, 11(5): 599-612.
doi: 10.1007/s12559-019-09664-w |
[43] | POOBALAN P, PANNIRSELVAM S. Semi-Supervised Clustering Based Feature Selection with Multiobjective Genomic Search Class-Based Classification Method for NIDPS[J]. Indian Journal of Science and Technology, 2022, 15(19): 948-955. |
[44] | JASIM M, GAATA M. K-Means Clustering-Based Semi-Supervised for DDoS Attacks Classification[J]. Bulletin of Electrical Engineering and Informatics, 2022, 11(6): 3570-3576. |
[45] |
GU Yonghao, LI Kaiyue, GUO Zhenyang, et al. Semi-Supervised K-Means DDoS Detection Method Using Hybrid Feature Selection Algorithm[J]. IEEE Access, 2019, 7: 64351-64365.
doi: 10.1109/ACCESS.2019.2917532 |
[46] | AL-JARRAH O Y, AL-HAMMDI Y, YOO P D, et al. Semi-Supervised Multi-Layered Clustering Model for Intrusion Detection[J]. Digital Communications and Networks, 2018, 4(4): 277-286. |
[47] | JIANG E P. A Semi-Supervised Learning Model for Intrusion Detection[J]. Intelligent Decision Technologies, 2019, 13(3): 343-353. |
[48] | SAHU S K, MOHAPATRA D P, PANDA S K. A Self-Trained Support Vector Machine Approach for Intrusion Detection[C]// Springer. Advances in Distributed Computing and Machine Learning:Proceedings of ICADCML 2020. Heidelberg: Springer, 2021: 391-402. |
[49] | HOU Yubo, TEO S G, CHEN Zhenghua, et al. Handling Labeled Data Insufficiency: Semi-Supervised Learning with Self-Training Mixup Decision Tree for Classification of Network Attacking Traffic[EB/OL]. (2022-08-01)[2023-09-03]. https://doi.org/10.1109/TDSC.2022.3195534. |
[50] | ZHOU Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016. |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. | |
[51] | ZHOU Zhihua, LI Ming. Tri-Training: Exploiting Unlabeled Data Using Three Classifiers[J]. IEEE Transactions on Knowledge Data Engineering, 2005, 17(11): 1529-1541. |
[52] | LI Wenjuan, MENG Weizhi, AU M H. Enhancing Collaborative Intrusion Detection via Disagreement-Based Semi-Supervised Learning in IoT Environments[EB/OL]. (2020-03-20)[2023-09-03]. https://doi.org/10.1016/j.jnca.2020.102631. |
[53] | REDDY D K K, NAYAK J, BEHERA H. A Hybrid Semi-Supervised Learning with Nature-Inspired Optimization for Intrusion Detection System in IoT Environment[C]// Springer. International Conference on Computational Intelligence in Pattern Recognition. Heidelberg: Springer, 2022: 580-591. |
[54] | SHARMA R, JOSHI A M, SAHU C, et al. Semi Supervised Cyber Attack Detection System For Smart Grid[C]// IEEE. 2022 30th Southern African Universities Power Engineering Conference (SAUPEC). New York: IEEE, 2022: 1-5. |
[55] | LEE S-W, MOHAMMADI M, RASHIDI S, et al. Towards Secure Intrusion Detection Systems Using Deep Learning Techniques: Comprehensive Analysis and Review[EB/OL]. (2021-05-09)[2023-09-03]. https://doi.org/10.1016/j.jnca.2021.103111. |
[56] | ZHAO Ruijie, TANG Tiantian, GUI Guan, et al. A Lightweight Semi-Supervised Learning Method Based on Consistency Regularization for Intrusion Detection[C]// IEEE. ICC 2022-IEEE International Conference on Communications. New York: IEEE, 2022: 3124-3129. |
[57] | GAO Feng, LI Jing, CHENG Ruiying, et al. ConNet: Deep Semi-Supervised Anomaly Detection Based on Sparse Positive Samples[J]. IEEE Access, 2021, 9: 67249-67258. |
[58] | CAI Shaokang, HAN Dezhi, LI Dun. A Feedback Semi-Supervised Learning with Meta-Gradient for Intrusion Detection[J]. IEEE Systems Journal, 2023, 17(1): 1158-1169. |
[59] | DONG Shi, XIA Yuanjun, PENG Tao. Network Abnormal Traffic Detection Model Based on Semi-Supervised Deep Reinforcement Learning[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4197-4212. |
[60] |
LI Haitao, WANG Ruimin, DONG Weiyu, et al. Semi-Supervised Network Traffic Anomaly Detection Method Based on GRU[J]. Computer Science, 2023, 50(3): 380-390.
doi: 10.11896/jsjkx.220100032 |
李海涛, 王瑞敏, 董卫宇, 等. 一种基于 GRU 的半监督网络流量异常检测方法[J]. 计算机科学, 2023, 50(3): 380-390.
doi: 10.11896/jsjkx.220100032 |
|
[61] | BASATI A, FAGHIH M M. PDAE: Efficient Network Intrusion Detection in IoT Using Parallel Deep Auto-Encoders[J]. Information Sciences, 2022, 598: 57-74. |
[62] | DU Xiangtong, Li Yongzhong, Feng Zunlei. A Semi-Supervised Intrusion Detection Algorithm Based on Auto-Encoder[C]// Springer. Security, Privacy, and Anonymity in Computation, Communication, and Storage. Heidelberg: Springer, 2021: 188-199. |
[63] | AOUEDI O, PIAMRAT K, BAGADTHEY D. A Semi-Supervised Stacked Autoencoder Approach for Network Traffic Classification[C]// IEEE. 2020 IEEE 28th International Conference on Network Protocols (ICNP). New York: IEEE, 2020: 1-6. |
[64] | LEE J H, KIM J W, CHOI M J. SSAE-DeepCNN Model for Network Intrusion Detection[C]// IEEE. 2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS). New York: IEEE, 2021: 78-83. |
[65] | ZHAO Feng, ZHANG Hao, PENG Jia, et al. A Semi-Self-Taught Network Intrusion Detection System[J]. Neural Computing and Applications, 2020, 32(23): 17169-17179. |
[66] | ZHANG Lianming, XIE Xiaowei, XIAO Kai, et al. MANomaly: Mutual Adversarial Networks for Semi-Supervised Anomaly Detection[J]. Information Sciences, 2022, 611: 65-80. |
[67] | DING Shanshuo, KOU Liang, WU Ting. A GAN-Based Intrusion Detection Model for 5G Enabled Future Metaverse[J]. Mobile Networks and Applications, 2022, 27(6): 2596-2610. |
[68] | CHEN Yixin, WANG Shuai. TraCGAN: An Efficient Traffic Classification Framework Based on Semi-Supervised Learning with Deep Conventional Generative Adversarial Network[C]// Springer. 1st International Conference on Emerging Networking Architecture and Technologies. Heidelberg: Springer, 2023: 286-297. |
[69] | SAURABH K, SINGH A, SINGH U, et al. GANIBOT: A Network Flow Based Semi Supervised Generative Adversarial Networks Model for IoT Botnets Detection[C]// IEEE. 2022 IEEE International Conference on Omni-Layer Intelligent Systems (COINS). New York: IEEE, 2022: 1-5. |
[70] | JEONG H, YU J, LEE W. Poster Abstract: A Semi-Supervised Approach for Network Intrusion Detection Using Generative Adversarial Networks[C]// IEEE. IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). New York: IEEE, 2021: 1-2. |
[71] | VU L, NGUYEN Q U, NGUYEN D N, et al. Deep Generative Learning Models for Cloud Intrusion Detection Systems[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 565-577. |
[72] | HARA K, SHIOMOTO K. Intrusion Detection System Using Semi-Supervised Learning with Adversarial Auto-Encoder[C]// IEEE. NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium. New York: IEEE, 2020: 1-8. |
[73] | HOANG T-N, KIM D. Detecting In-Vehicle Intrusion via Semi-Supervised Learning-Based Convolutional Adversarial Autoencoders[EB/OL]. (2022-09-06)[2023-09-03]. https://doi.org/10.1016/j.vehcom.2022.100520. |
[74] | LIU Xiaobing, LUO Entao, YANG Jie, et al. Semi-Supervised Intrusion Detection Method Based on Adversarial Autocoder[C]// IEEE. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). New York: IEEE, 2021: 637-643. |
[75] | THAI H H, HIEU N D, THO N V, et al. Adversarial AutoEncoder and Generative Adversarial Networks for Semi-Supervised Learning Intrusion Detection System[C]// IEEE. 2022 RIVF International Conference on Computing and Communication Technologies (RIVF). New York: IEEE, 2022: 584-589. |
[76] | XIANG Zhiyang, XIAO Zhu, WANG Dong, et al. Incremental Semi-Supervised Kernel Construction with Self-Organizing Incremental Neural Network and Application in Intrusion Detection[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(2): 815-823. |
[77] | NOORBEHBAHANI F, FANIAN A, MOUSAVI R, et al. An Incremental Intrusion Detection System Using a New Semi-Supervised Stream Classification Method[EB/OL]. (2017-03-10)[2023-09-03]. https://doi.org/10.1002/dac.3002. |
[78] | LI Bin, WANG Yijie, XU Kele, et al. DFAID: Density-Aware and Feature-Deviated Active Intrusion Detection over Network Traffic Streams[EB/OL]. (2022-04-10)[2023-09-03]. https://doi.org/10.1016/j.cose.2022.102719. |
[79] | KUMARI V V, VARMA P R K. A Semi-Supervised Intrusion Detection System Using Active Learning SVM and Fuzzy C-Means Clustering[C]// IEEE. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)( I-SMAC). New York: IEEE, 2017: 481-485. |
[80] | ZHANG Yong, NIU Jie, HE Guojian, et al. Network Intrusion Detection Based on Active Semi-Supervised Learning[C]// IEEE. 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). New York: IEEE, 2021: 129-135. |
[81] | NIU Zequn, GUO Wenjie, XUE Jingfeng, et al. A Novel Anomaly Detection Approach Based on Ensemble Semi-Supervised Active Learning (ADESSA)[EB/OL]. (2023-03-21)[2023-09-03]. https://doi.org/10.1016/j.cose.2023.103190. |
[82] | AOUEDI O, PIAMRAT K, MULLER G, et al. Intrusion Detection for Softwarized Networks with Semi-Supervised Federated Learning[C]// IEEE. ICC 2022-IEEE International Conference on Communications. New York: IEEE, 2022: 5244-5249. |
[83] | AOUEDI O, PIAMRAT K, MULLER G, et al. Federated Semisupervised Learning for Attack Detection in Industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 286-295. |
[84] | ZHAO Ruijie, YANG Linbo, WANG Yijun, et al. A Semi-Supervised Federated Learning Scheme via Knowledge Distillation for Intrusion Detection[C]// IEEE. ICC 2022-IEEE International Conference on Communications. New York: IEEE, 2022: 2688-2693. |
[85] | ZHAO Ruijie, WANG Yijun, XUE Zhi, et al. Semisupervised Federated-Learning-Based Intrusion Detection Method for Internet of Things[J]. IEEE Internet of Things Journal, 2023, 10(10): 8645-8657. |
[86] | NAEEM F, ALI M, KADDOUM G. Federated-Learning-Empowered Semi-Supervised Active Learning Framework for Intrusion Detection in ZSM[J]. IEEE Communications Magazine, 2023, 61(2): 88-94. |
[1] | WANG Jian, CHEN Lin, WANG Kailun, LIU Jiqiang. Application Layer DDoS Detection Method Based on Spatio-Temporal Graph Neural Network [J]. Netinfo Security, 2024, 24(4): 509-519. |
[2] | JIANG Rong, LIU Haitian, LIU Cong. Unsupervised Network Intrusion Detection Method Based on Ensemble Learning [J]. Netinfo Security, 2024, 24(3): 411-426. |
[3] | FENG Guangsheng, JIANG Shunpeng, HU Xianlang, MA Mingyu. New Research Progress on Intrusion Detection Techniques for the Internet of Things [J]. Netinfo Security, 2024, 24(2): 167-178. |
[4] | JIN Zhigang, DING Yu, WU Xiaodong. Federated Intrusion Detection Algorithm with Bilateral Correction Merging Gradient Difference [J]. Netinfo Security, 2024, 24(2): 293-302. |
[5] | SUN Hongzhe, WANG Jian, WANG Peng, AN Yulong. Network Intrusion Detection Method Based on Attention-BiTCN [J]. Netinfo Security, 2024, 24(2): 309-318. |
[6] | SONG Yuhan, ZHU Yuefei, WEI Fushan. An Anomaly Detection Scheme for Blockchain Transactions Based on AdaBoost Model [J]. Netinfo Security, 2024, 24(1): 24-35. |
[7] | QIN Zhongyuan, MA Nan, YU Yacong, CHEN Liquan. Network Anomaly Detection Based on Dual Graph Convolutional Network and Autoencoders [J]. Netinfo Security, 2023, 23(9): 1-11. |
[8] | SHEN Hua, TIAN Chen, GUO Sensen, MU Zhiying. Research on Adversarial Machine Learning-Based Network Intrusion Detection Method [J]. Netinfo Security, 2023, 23(8): 66-75. |
[9] | PENG Hanzhong, ZHANG Zhujun, YAN Liyue, HU Chenglin. Research on Intrusion Detection Mechanism Optimization Based on Federated Learning Aggregation Algorithm under Consortium Chain [J]. Netinfo Security, 2023, 23(8): 76-85. |
[10] | JIANG Yingzhao, CHEN Lei, YAN Qiao. Distributed Denial of Service Attack Detection Algorithm Based on Two-Channel Feature Fusion [J]. Netinfo Security, 2023, 23(7): 86-97. |
[11] | LIU Changjie, SHI Runhua. A Smart Grid Intrusion Detection Model for Secure and Efficient Federated Learning [J]. Netinfo Security, 2023, 23(4): 90-101. |
[12] | GAO Qingguan, ZHANG Bo, FU Anmin. An Advanced Persistent Threat Detection Method Based on Attack Graph [J]. Netinfo Security, 2023, 23(12): 59-68. |
[13] | WU Shenglin, LIU Wanggen, YAN Ming, WU Jie. A Real-Time Anomaly Detection System for Container Clouds Based on Unsupervised System Call Rule Generation [J]. Netinfo Security, 2023, 23(12): 91-102. |
[14] | LIAO Liyun, ZHANG Bolei, WU Lifa. IoT Anomaly Detection Model Based on Cost-Sensitive Learning [J]. Netinfo Security, 2023, 23(11): 94-103. |
[15] | WANG Zhi, ZHANG Hao, Jason GU. A Hybrid Method of Joint Entropy and Multiple Clustering Based DDoS Detection in SDN [J]. Netinfo Security, 2023, 23(10): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||