Netinfo Security ›› 2024, Vol. 24 ›› Issue (3): 438-448.doi: 10.3969/j.issn.1671-1122.2024.03.009
Previous Articles Next Articles
ZHANG Xinyou, SUN Feng(), FENG Li, XING Huanlai
Received:
2023-12-15
Online:
2024-03-10
Published:
2024-04-03
Contact:
SUN Feng
E-mail:sun.feng@my.swjtu.edu.cn
CLC Number:
ZHANG Xinyou, SUN Feng, FENG Li, XING Huanlai. Multi-View Representations for Fake News Detection[J]. Netinfo Security, 2024, 24(3): 438-448.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.03.009
Model | 准确率 | 虚假新闻 | 真实新闻 | ||||
---|---|---|---|---|---|---|---|
精确度 | 召回率 | F1 | 精确度 | 召回率 | F1 | ||
LSTM | 87.8 % | 88.5 % | 87.7 % | 87.9 % | 86.5 % | 88.1 % | 87.0 % |
BERT | 89.7 % | 88.7 % | 91.4 % | 89.9 % | 90.5 % | 87.9 % | 89.0 % |
BERT+Attention | 91.1 % | 91.0 % | 91.8 % | 91.3 % | 91.3 % | 90.1 % | 90.6 % |
TextCNN | 90.4 % | 90.3 % | 91.5 % | 90.5 % | 91.0 % | 89.9 % | 90.0 % |
CARMN | 92.5 % | 92.2 % | 92.7 % | 92.4 % | 92.7 % | 92.3 % | 92.5 % |
Bi-GCN | 94.4 % | 92.6 % | 96.8 % | 94.6 % | 96.6 % | 92.0 % | 94.1 % |
DA-GCN | 94.4 % | 94.1 % | 94.6 % | 94.4 % | 94.7 % | 94.1 % | 94.4 % |
DAN-Tree | 95.8 % | 94.6 % | 97.2 % | 95.8 % | 97.2 % | 94.5 % | 95.8 % |
MVRFD | 96.7 % | 96.0 % | 97.7 % | 96.8 % | 97.5 % | 95.5 % | 96.4 % |
[1] | YANG Fan, YU Xiaohui, LIU Yang, et al. Automatic Detection of Rumor on Sina Weibo[C]// ACM. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 1-7. |
[2] | ZHAO Zhe, RESNICK P, MEI Qiaozhu. Enquiring Minds: Early Detection of Rumors in Social Media from Enquiry Posts[C]// ACM. The 24th International Conference on World Wide Web. New York: ACM, 2015: 1395-1405. |
[3] | HOOI B, SHAH N, BEUTEL A, et al. BIRDNEST: Bayesian Inference for Ratings-Fraud Detection[C]// SIAM. The 2016 SlAM Internationa Conference on Data Mining. Philadelphia: SIAM, 2016: 495-503. |
[4] | GIRGIS S, AMER E, GADALLAH M. Deep Learning Algorithms for Detecting Fake News in Online Text[C]// IEEE. The 13th International Conference on Computer Engineering and Systems. New York: IEEE, 2018: 93-97. |
[5] | DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding[C]// ACL. Proceedings of NAACL-HLT. Stroudslourg: ACL 2019, 1: 4171-4186. |
[6] | DU Pengfei, LI Xiaoyong, GAO Yali. Survey on Multimodal Visual Language Representation Learning[J]. Journal of Software, 2021, 32(2): 327-348. |
杜鹏飞, 李小勇, 高雅丽. 多模态视觉语言表征学习研究综述[J]. 软件学报, 2021, 32(2): 327-348. | |
[7] | WU Ke, SONG Yang, ZHU K Q. False Rumors Detection on Sina Weibo by Propagation Structures[C]// IEEE. The 31st IEEE International Conference on Data Engineering. New York: IEEE, 2015: 651-662. |
[8] | BIAN Tian, XIAO Xi, XU Tingyang, et al. Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks[C]// AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020, 34(1): 549-556. |
[9] | SONG Chenguang, TENG Yiyang, ZHU Yangfu, et al. Dynamic Graph Neural Network for Fake News Detection[J]. Neurocomputing, 2021(505): 27-31. |
[10] |
SONG Chenguang, SHU Kai, WU Bin, et al. Temporally Evolving Graph Neural Network for Fake News Detection[J]. Information Processing & Management, 2021, 58(6): 102712.
doi: 10.1016/j.ipm.2021.102712 URL |
[11] |
SONG Chenguang, NING Nianwen, ZHANG Yunlei, et al. A Multimodal Fake News Detection Model Based on Crossmodal Attention Residual and Multichannel Convolutional Neural Networks[J]. Information Processing & Management, 2021, 58(1): 102437.
doi: 10.1016/j.ipm.2020.102437 URL |
[12] |
XIONG Shufeng, ZHANG Guipeng, BATRA V, et al. TRIMOON: Two-Round Inconsistency-Based Multi-Modal Fusion Network for Fake News Detection[J]. Information Fusion, 2023, 93: 150-158.
doi: 10.1016/j.inffus.2022.12.016 URL |
[13] | QI Peng, CAO Juan, LI Xirong, et al. Improving Fake News Detection by Using an Entity-Enhanced Framework to Fuse Diverse Multimodal Clues[C]// ACM. Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 1212-1220. |
[14] | CHEN Yiyuan, LI Dongsheng, ZHANG Peng, et al. Cross-Modal Ambiguity Learning for Multimodal Fake News Detection[C]// ACM. The ACM Web Conference. New York: ACM, 2022: 2897-2905. |
[15] | MA Jing, GAO Wei, MITRA P, et al. Detecting Rumors from Microblogs with Recurrent Neural Networks[C]// ACM. The 25th International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 3818-3824. |
[16] | WEI Lingwei, HU Dou, ZHOU Wei, et al. Uncertainty-Aware Propagation Structure Reconstruction for Fake News Detection[C]// ACL. The 29th International Conference on Computational Linguistics. Stroudsburg: ACL, 2022, 29(1): 2759-2768. |
[17] | SUN Ling, RAO Yuan, LAN Yuqian, et al. HG-SL: Jointly Learning of Global and Local User Spreading Behavior for Fake News Early Detection[C]// AAAI. Proceedings of the 37th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2023, 37(4): 5248-5256. |
[18] | DOU Yingtong, SHU Kai, XIA Congying, et al. User Preference-Aware Fake News Detection[C]// ACM. The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2051-2055. |
[19] |
RAN Hongyan, JIA Caiyan, ZHANG Pengfei, et al. MGAT-ESM: Multi-Channel Graph Attention Neural Network with Event-Sharing Module for Rumor Detection[J]. Information Sciences, 2022, 592: 402-416.
doi: 10.1016/j.ins.2022.01.036 URL |
[20] | HAN Xiaohong, ZHAO Mengfan, ZHANG Yutao. Joint Heterogeneous Graph Convolutional Network and Attention Mechanism for Fake News[EB/OL]. (2022-11-28)[2023-12-01]. https://doi.org/10.20009/j.cnki.21-1106/TP.2022-0412. |
韩晓鸿, 赵梦凡, 张钰涛. 联合异质图卷积网络和注意力机制的假新闻检测[EB/OL]. (2022-11-28)[2023-12-01]. https://doi.org/10.20009/j.cnki.21-1106/TP.2022-0412. | |
[21] |
BAZMI P, ASADPOUR M, SHAKERY A. Multi-View Co-Attention Network for Fake News Detection by Modeling Topic-Specific User and News Source Credibility[J]. Information Processing and Management, 2023, 60(1): 103146.
doi: 10.1016/j.ipm.2022.103146 URL |
[22] | YING Qichao, HU Xiaoxiao, ZHOU Yangming, et al. Bootstrapping Multi-View Representations for Fake News Detection[C]// AAAI. The 37th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2023, 37(4): 5384-5392. |
[23] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C]// IEEE. The 3th International Conference on Learning Representations. New York: IEEE, 2015: 730-734. |
[24] | LU Jiasen, BATRA D, PARIKH D, et al. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks[C]// ACM. The 33nd International Conference on Neural Information Processing Systems. New York: ACM, 2019: 13-23. |
[25] | KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[C]// IEEE. The 5th International Conference on Learning Representations. New York: IEEE, 2017: 11305-11312. |
[26] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[EB/OL]. (2017-10-30)[2023-12-01]. https://arxiv.org/abs/1710.10903. |
[27] |
SINGH J P, KUMAR A, RANA N P, et al. Attention-Based LSTM Network for Rumor Veracity Estimation of Tweets[J]. Information Systems Frontiers, 2022, 24(2): 459-474.
doi: 10.1007/s10796-020-10040-5 |
[28] | KIM Y. Convolutional Neural Networks for Sentence Classification[C]// ACL. 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746 -1751. |
[29] |
LIU Xiaoyang, ZHAO Zhengyang, ZHANG Yihao, et al. Social Network Rumor Detection Method Combining Dual-Attention Mechanism with Graph Convolutional Network[J]. IEEE Transactions on Computational Social Systems, 2023, 10(5): 2350-2361.
doi: 10.1109/TCSS.2022.3184745 URL |
[30] |
BAI Lin, HAN Xueming, JIA Caiyan. A Rumor Detection Model Incorporating Propagation Path Contextual Semantics and User Information[J]. Neural Processing Letters, 2023, 55(7): 9831-9850.
doi: 10.1007/s11063-023-11229-w |
[1] | YANG Zhipeng, LIU Daidong, YUAN Junyi, WEI Songjie. Research on Network Local Security Situation Fusion Method Based on Self-Attention Mechanism [J]. Netinfo Security, 2024, 24(3): 398-410. |
[2] | JIANG Kui, LU Lufan, SU Yaoyang, NIE Wei. SHDoS Attack Detection Research Based on Attention-GRU [J]. Netinfo Security, 2024, 24(3): 427-437. |
[3] | SUN Hongzhe, WANG Jian, WANG Peng, AN Yulong. Network Intrusion Detection Method Based on Attention-BiTCN [J]. Netinfo Security, 2024, 24(2): 309-318. |
[4] | YU Shangrong, XIAO Jingbo, YIN Qilin, LU Wei. A Social Heterophily Focused Framework for Social Bot Detection [J]. Netinfo Security, 2024, 24(2): 319-327. |
[5] | QIN Zhongyuan, MA Nan, YU Yacong, CHEN Liquan. Network Anomaly Detection Based on Dual Graph Convolutional Network and Autoencoders [J]. Netinfo Security, 2023, 23(9): 1-11. |
[6] | LIU Gang, YANG Wenli, WANG Tongli, LI Yang. Differential Privacy-Preserving Dynamic Recommendation Model Based on Cloud Federation [J]. Netinfo Security, 2023, 23(7): 31-43. |
[7] | JIANG Yingzhao, CHEN Lei, YAN Qiao. Distributed Denial of Service Attack Detection Algorithm Based on Two-Channel Feature Fusion [J]. Netinfo Security, 2023, 23(7): 86-97. |
[8] | LI Jiyu, FU Zhangjie, ZHANG Yubin. An Image Information Hiding Algorithm Based on Cross-Domain Adversarial Adaptation [J]. Netinfo Security, 2023, 23(1): 93-102. |
[9] | ZHANG Guanghua, LIU Yongsheng, WANG He, YU Naiwen. Smart Contract Vulnerability Detection Scheme Based on BiLSTM and Attention Mechanism [J]. Netinfo Security, 2022, 22(9): 46-54. |
[10] | ZHANG Guanghua, YAN Fengru, ZHANG Dongwen, LIU Xuefeng. Insider Threat Detection Model Based on LSTM-Attention [J]. Netinfo Security, 2022, 22(2): 1-10. |
[11] | TONG Xin, JIN Bo, WANG Jingya, YANG Ying. A Multi-View and Multi-Task Learning Detection Method for Android Malware [J]. Netinfo Security, 2022, 22(10): 1-7. |
[12] | ZHU Lina, MA Mingrui, ZHU Dongzhao. Detection Method for C Language Family Based on Graph Neural Network and Generic Vulnerability Analysis Framework [J]. Netinfo Security, 2022, 22(10): 59-68. |
[13] | SHI Tuo, LIANG Fei, SHANG Gangchuan, TIAN Yangjun. Detection of Malicious Ethereum Account Based on Time Series Transaction and Graph Attention Neural Network [J]. Netinfo Security, 2022, 22(10): 69-75. |
[14] | LIU Shuo, ZHANG Xinglan. Intrusion Detection System Based on Dual Attention [J]. Netinfo Security, 2022, 22(1): 80-86. |
[15] | QIN Zhongyuan, HU Ning, FANG Lanting. Network Anomaly Detection Method Based on Immune Bionic Mechanism and Graph Neural Network [J]. Netinfo Security, 2021, 21(8): 10-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||