[1] |
ZHENG Zibin, XIE Shaoan, DAI Hongning, et al. An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends [C]//IEEE. 5th IEEE International Congress on Big Data, June 25-30, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 557-564.
|
[2] |
XIE Junfeng, TANG H, HUANG Tao, et al. A Survey of Blockchain Technology Applied to Smart Cities: Research Issues and Challenges[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3):2794-2830.
|
[3] |
PHAM T, LEE S. Anomaly Detection in Bitcoin Network Using Unsupervised Learning Methods[EB/OL]. https://arxiv.org/abs/1611.03941v2, 2016-11-12.
|
[4] |
PHAM T, LEE S. Anomaly Detection in the Bitcoin System-A Network Perspective[EB/OL]. https://arxiv.org/abs/1611.03942v1, 2016-11-12.
|
[5] |
TOYODA K, OHTSUKI T, MATHIOPOULOS P T. Identification of High Yielding Investment Programs in Bitcoin via Transactions Pattern Analysis [C]//IEEE. 17th IEEE Global Communications Conference, December 4-8, 2017, Singapore. New York: IEEE, 2017: 1-6.
|
[6] |
BARTOLETTI M, CARTA S, CIMOLI T, et al. Dissecting Ponzi Schemes on Ethereum: Identification, Analysis, Impact[EB/OL]. https://arxiv.org/abs/1703.03779v6, 2017-03-10.
|
[7] |
VASEK M, MOORE T. Analyzing the Bitcoin Ponzi Scheme Ecosystem [C]//Springer. 22nd International Conference on Financial Cryptography and Data Security, February 26-March 2, 2018, Nieuwpoort, Curacao, Netherlands Antilles. Heidelberg: Springer, 2018: 101-112.
|
[8] |
CHEN Weili, ZHENG Zibin, CUI Jiahui, et al. Detecting Ponzi Schemes on Ethereum: Towards Healthier Blockchain Technology [C]//ACM. 27th World Wide Web Conference, April 23-27, 2018, Lyon, France. New York: ACM, 2018: 1409-1418.
|
[9] |
TORRES C F, STEICHEN M. The Art of the Scam: Demystifying Honeypots in Ethereum Smart Contracts [C]//USENIX. 28th USENIX Conference on Security Symposium, August 14-16, 2019, Santa Clara, CA, USA. Berkeley: USENIX, 2019: 1591-1607.
|
[10] |
CHEN Weili, WU Jun, ZHENG Zibin, et al. Market Manipulation of Bitcoin: Evidence from Mining the Mt. Gox Transaction Network [C]//IEEE. 38th IEEE Conference on Computer Communications, April 29-May 2, 2019, Paris, France. New York: IEEE, 2019: 964-972.
|
[11] |
OH B, JUN T J, YOON W, et al. Enhancing Trust of Supply Chain Using Blockchain Platform with Robust Data Model and Verification Mechanisms [C]//IEEE. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), October 6-9, 2019, Bari, Italy. New York: IEEE, 2019: 3504-3511.
|
[12] |
WANG Ziyu, LUO Nanqing, ZHOU Pan. GuardHealth: Blockchain Empowered Secure Data Management and Graph Convolutional Network Enabled Anomaly Detection in Smart Healthcare[J]. Journal of Parallel and Distributed Computing, 2020, 142(6):1-12.
doi: 10.1016/j.jpdc.2020.03.004
URL
|
[13] |
HUANG Dongyan, CHEN Bin, LI Lang, et al. Anomaly Detection for Consortium Blockchains Based on Machine Learning Classification Algorithm [C]//Springer. 9th International Conference on Computational Data and Social Networks, December 11-13, 2020, Dallas, TX, USA. Heidelberg: Springer, 2020: 307-318.
|
[14] |
GARCIA S, DERRAC J, CANO J, et al. Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3):417-435.
doi: 10.1109/TPAMI.2011.142
URL
|