Netinfo Security ›› 2019, Vol. 19 ›› Issue (3): 61-71.doi: 10.3969/j.issn.1671-1122.2019.03.008
• Orginal Article • Previous Articles Next Articles
Hong CHEN, Yue XIAO(), Chenglong XIAO, Jianhu CHEN
Received:
2018-09-28
Online:
2019-03-19
Published:
2020-05-11
CLC Number:
Hong CHEN, Yue XIAO, Chenglong XIAO, Jianhu CHEN. The Intrusion Detection Method of SMOTE Algorithm with Maximum Dissimilarity Coefficient Density[J]. Netinfo Security, 2019, 19(3): 61-71.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2019.03.008
类别 | 特征 |
---|---|
nominal | protocol_type(2),server_type(3),flag(4) |
numeric | duration(1),src_bytes(5),dst_bytes(6),land(7),wrong_fragment(8),urgent(9),hot(10),num_failed_logins(11),logged_in(12),num_compromised(13),root_shell(14),su_attempted(15),num_root(16),num_file_creations(17),num_shells(18),num_access_files(19),num_outbound_cmds(20),is_host_login(21),is_guest_login(22),count(23),srv_count(24),serror_rate(25),srv_serror_rate(26),rerror_rate(27),srv_rerror_rate(28),same_srv_rate(29),diff_srv_rate(30),srv_diff_host_rate(31),dst_host_count(32),dst_host_srv_count(33),dst_host_same_srv_rate(34),dst_host_diff_srv_rate(35),dst_host_same_src_port_rate(36),dst_host_srv_diff_host_rate(37),st_host_serror_rate(38),dst_host_srv_serror_rate(39),dst_host_rerror_rate(40),dst_host_srv_rerror_rate(41) |
类别 | 攻击类型 |
---|---|
Normal | normal |
DoS | back,land,neptune,pod,smurf,teardrop,apache2,updstorm, processtable,worm |
Probe | satan,ipsweep,nmap,portsweep,mscan,saint |
R2L | guess_password,ftp_write,imap,phf,multihop,warezmaster, warezclient,spy,xlock,xsnoop,snmpguess,snmpgetattack, httptunnel,sendmail,named |
U2R | buffer_overflow,loadmodule,rootkit,perl,sqlattack,xtem,ps |
类别 | 攻击子类型 | KDDTrain+_20Percent | KDDTest-21 |
---|---|---|---|
Normal | normal | 13449 | 2152 |
Probe | ipsweep | 710 | 141 |
mscan | 0 | 996 | |
nmap | 301 | 73 | |
portsweep | 587 | 156 | |
saint | 0 | 309 | |
satan | 691 | 727 | |
DoS | apache2 | 0 | 737 |
back | 196 | 359 | |
land | 1 | 7 | |
mailbomb | 0 | 0 | |
neptune | 8282 | 1579 | |
pod | 38 | 41 | |
processtable | 0 | 685 | |
smurf | 529 | 627 | |
teardrop | 188 | 12 | |
udpstorm | 0 | 2 | |
U2R | buffer_overflow | 6 | 20 |
httptunnel | 0 | 133 | |
loadmodule | 1 | 2 | |
perl | 0 | 2 | |
ps | 0 | 15 | |
rootkit | 4 | 13 | |
sqlattack | 0 | 2 | |
xterm | 0 | 13 | |
R2L | ftp_write | 1 | 3 |
guess_passwd | 10 | 1231 | |
imap | 5 | 1 | |
multihop | 2 | 18 | |
named | 0 | 17 | |
phf | 2 | 2 | |
sendmail | 0 | 14 | |
snmpgetattack | 0 | 178 | |
snmpguess | 0 | 331 | |
spy | 1 | 0 | |
warezclient | 181 | 0 | |
warezmaster | 7 | 944 | |
worm | 0 | 2 | |
xlock | 0 | 9 | |
xsnoop | 0 | 4 | |
数据集样本总数 | 25192 | 11850 |
邻域半径 | Precision | Recall | F1 | CE | MA | PR |
---|---|---|---|---|---|---|
0.3ε | 86.87% | 49.06% | 62.71% | 47.75% | 50.94% | 33.41% |
0.5ε | 87.35% | 53.45% | 66.32% | 44.43% | 46.55% | 34.89% |
0.7ε | 88.05% | 52.80% | 66.02% | 44.49% | 47.19% | 32.29% |
ε | 95.00% | 53.65% | 68.57% | 40.24% | 46.35% | 12.73% |
1.3ε | 90.16% | 49.16% | 63.63% | 47.53% | 50.83% | 32.62% |
1.5ε | 86.93% | 48.58% | 62.32% | 48.06% | 51.42% | 32.90% |
1.7ε | 85.97% | 41.78% | 56.23% | 53.22% | 58.21% | 30.71% |
分类方法 | Normal | DoS | Probe | R2L | U2R |
---|---|---|---|---|---|
改进SMOTE+ DBN+GBDT | 89.27% | 65.34% | 76.03% | 27.95% | 12.03% |
DS-SMOTE+ DBN+GBDT | 87.63% | 66.99% | 58.15% | 9.330% | 8.00% |
SVM | 91.21% | 56.77% | 47.83% | 7.800% | 0.0% |
DBN+SVM | 89.03% | 54.14% | 60.28% | 6.310% | 0.0% |
GBDT | 85.22% | 71.46% | 56.91% | 7.610% | 0.50% |
DBN+BP | 87.44% | 57.11% | 67.77% | 10.67% | 2.010% |
DBN+GBDT | 89.10% | 67.27% | 64.82% | 12.38% | 2.140% |
分类方法 | Precision | Recall | F1 | CE | MA | PR |
---|---|---|---|---|---|---|
改进SMOTE+ DBN+GBDT | 95.00% | 53.65% | 68.57% | 40.24% | 36.35% | 10.23% |
DS-SMOTE+ DBN+GBDT | 94.50% | 47.21% | 62.97% | 45.44% | 52.78% | 12.36% |
SVM | 94.13% | 39.48% | 55.63% | 51.12% | 60.51% | 18.78% |
DBN+SVM | 93.39% | 39.96% | 55.97% | 52.30% | 59.03% | 19.25% |
GBDT | 91.38% | 46.32% | 61.47% | 48.61% | 53.68% | 14.77% |
DBN+BP | 90.92% | 55.43% | 62.12% | 49.43% | 53.10% | 22.90% |
DBN+GBDT | 93.92% | 45.43% | 61.23% | 47.75% | 54.57% | 10.97% |
[1] | CHENG Dongmei, YAN Biao, WEN Hui, et al.The Design and Implement of Rule Matching-based Distributed Intrusion Detection Framework for Industry Control System[J]. Netinfo Security, 2017, 17(7): 45-51. |
程东梅,严彪,文辉,等.基于规则匹配的分布式工控入侵检测系统设计与实现[J].信息网络安全,2017,17(7):45-51. | |
[2] | HUO Yudan, GU Qiong, CAI Zhihua, et al.Classification Method of Imbalance Dataset Based on Genetic Algorithm Improved Synthetic Minority Over-sampling Technique[J]. Journal of Computer Application, 2015, 35(1): 121-124,139. |
霍玉丹,谷穷,蔡之华,等.基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法[J].计算机应用,2015,35(1):121-124,139. | |
[3] | XUE Limin, LI Zhong, LAN Wanwan.Research on Network Security Situation Prediction Technique Based on Online Learning RBFNN[J]. Netinfo Security, 2016, 16(4): 23-30. |
薛丽敏,李忠,蓝湾湾.基于在线学习RBFNN的网络安全态势预测技术研究[J].信息网络安全,2016,16(4):23-30. | |
[4] | TANG Chenghua, LIU Pengcheng, TANG Shensheng.Anomaly Intrusion Behavior Detection Based on Fuzzy Clustering and Features Selection[J]. Journal of Compute Research and Development, 2015, 52(3): 718-728. |
唐成华,刘鹏程,汤申生.基于特征选择的模糊聚类异常入侵行为检测[J].计算机研究与发展,2015,52(3):718-728. | |
[5] | HE Xiang, LIU Sheng, JIANG Jiguo.Comparative Study of Intrusion Detection Method Based on Machine Learning[J]. Netinfo Security, 2018, 18(5): 1-11. |
和湘,刘晟,姜吉国.基于机器学习的入侵检测方法对比研究[J].信息网络安全,2018,18(5):1-11. | |
[6] | SUN Yanmin, KAMEL M S, WONG A K C, et al. Cost-Sensitive Boosting for Classification of Imbalanced Data[J]. Pattern Recognition, 2007, 40(12): 3358-3378. |
[7] | ESTABROOKS A, JO T, JAPKOWICZ N.A Multiple Resampling Method for Learning from Imbalanced Datasets[J]. Computational Intelligence, 2004, 20(1): 18-36. |
[8] | ZHAI Yun, WANG Shupeng, MA Nan, et al.A Data Mining Method for Imbalanced Datasets Based on One-sided Link and Distribution Density of Instance[J]. Acta Electronica Sinica, 2014, 42(7): 1311-1319. |
翟云,王树鹏,马楠,等.基于单边选择链和样本分布密度融合机制的非平衡数据挖掘方法[J].电子学报,2014,42(7):1311-1319. | |
[9] | GU Xiaoqing, JIANG Yizhang, WANG Shitong.Zero-order TSK-type Fuzzy System for Imbalanced Data Classification[J]. Acta Automation Sinica, 2017, 43(10): 1773-1788. |
顾晓清,蒋亦樟,王士同.用于不平衡数据分类的0阶TSK型模糊系统[J].自动化学报,2017,43(10):1773-1788. | |
[10] | IMAM T, TING K M, KAMRUZZAMAN J. z-SVM: An SVM for Improved Classification of Imbalanced Data [EB/OL]. https://link.springer.com/chapter/10.1007/11941439_30, 2017-5-1. |
[11] | WANG Junhong, DUAN Bingqian.Research on the SMOTE Method Based on Density[J]. CAAI Transactions on Intelligent System, 2017, 12(6): 865-872. |
王俊红,段冰倩.一种基于密度的SMOTE方法研究[J].智能系统学报,2017,12(6):865-872. | |
[12] | LOU Xiaojun, SUN Yuxuan, LIU Haitao.Clustering Boundary Over-sampling Classification Method for Imbalanced Data Sets[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(6): 944-950. |
楼晓俊,孙雨轩,刘海涛.聚类边界过采样不平衡数据分类方法[J].浙江大学学报(工学版),2013,47(6): 944-950. | |
[13] | ZHONG Dunhao, ZHANG Dongmei, ZHANG Yu.A Method of Intrusion Detection in Wireless Sensor Network Based on Similarity Algorithm[J]. Netinfo Security, 2016, 16(2): 22-27. |
钟敦昊,张冬梅,张玉.一种基于相似度计算的无线传感器网络入侵检测方法[J].信息网络安全,2016,16(2):22-27. | |
[14] | CHAWLA N V, BOWYER K W, HALL L O, et al.SMOTE: Synthetic Minority Over-sampling Technique[J]. Journal of Artificial Intelligence Research, 2011, 16(1) : 321-357. |
[15] | EZ J, KRAWCZYK B, NIAK M.Analyzing the Oversampling of Different Classes and Types of Examples in Multi-class Imbalanced Datasets[J]. Pattern Recognition, 2016, 57(C): 164-178. |
[16] | HAN H, WANG W Y, MAO B H. Borderline-SMOTE: A New Over-sampling Method in Imbalanced Datasets Learning [EB/OL]. https://link.springer.com/chapter/10.1007%2F11538059_91, 2017-5-1. |
[17] | XIA Yuming, HU Shaoyong, ZHU Shaomin, et al.Research on the Method of Network Attrack Detection Based on Convolution Neural Network[J]. Netinfo Security, 2017, 17(11): 32-36. |
夏玉明,胡绍勇,朱少民,等.基于卷积神经网络的网络攻击检测方法研究[J].信息网络安全,2017,17(11):32-36. | |
[18] | HINTON G E, SALAKHUTDINOV R R, Reducing the Dimensionality of Data with Neutral Networks[J]. Science, 2006, 313(5786): 504-507. |
[19] | DONG Y, LI D.Deep Learning and Its Applications to Signal and Information Processing[J]. IEEE Signal Processing Magazine, 2011, 28(1): 145-154. |
[20] | AREL I,ROSE D C,KARNOWSKI T P.Deep Machine Learning—A New Frontier in Artificial Intelligent Research[J]. IEEE Computational Intelligent Magazine, 2010, 5(4): 13-18. |
[21] | CHEN Hong, WAN Guangxue, XIAO Zhenjiu.Instrusion Detection Method of Deep Belief Network Model Based on Optimization of Data Processing[J]. Journal of Computer Application, 2017, 37(6): 1636-1643. |
陈虹,万广雪,肖振久.基于优化数据处理的深度信念网络模型的入侵检测方法[J].计算机应用,2017,37(6):1636-1643. | |
[22] | FRIEDMAN J H.Greedy Function Approximation: A Gradient Boosting Machine[J]. Annals of Statistics, 2000, 29(5): 1189-1232. |
[23] | ZHANG Chongsheng, PENG Guowen, YU Keke.Facial Points Detection Based on GBDT and HOG[J]. Journal of Henan University(Natural Science), 2018, 48(2): 214-222. |
张重生,彭国雯,于珂珂.基于GBDT和HOG特征的人脸关键点定位[J].河南大学学报(自然科学版),2018,48(2):214-222. | |
[24] | ZHANG Yu, LIU Yudong, JI Zhao.Vector Similarity Measurement Method[J]. Journal of Acoustic Technique, 2009, 28(4): 532-536. |
张宇,刘雨东,计钊.向量相似度测度方法[J].声学技术,2009,28(4):532-536. | |
[25] | DHANABAL L, SHANTHARAJAH S P.A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6): 446-452. |
[26] | LI Xiongfei, LI Jun, DONG Yuanfang, et al.A New Learning Algorithm for Imbalanced Data—PCBoost[J].Chinese Journal of Computers, 2012, 35(2): 202-209. |
李雄飞,李军,董元方,等.一种新的不平衡数据学习算法PCBoost[J].计算机学报,2012,35(2):202-209. | |
[27] | NAGANJANEYULU S, KUPPA M R.A Novel Framework for Class Imbalance Learning Using Intelligent Under-sampling[J]. Progress in Artificial Intelligence, 2013, 2(1): 73-84. |
[28] | JIANG K, LU J, XIA K.A Novel Algorithm for Imbalance Data Classification Based on Genetic Algorithm Improved SMOTE[J]. Arabian Journal for Science and Engineering, 2016, 41(8): 3255-3266. |
[1] | Rong WANG, Chunguang MA, Peng WU. An Intrusion Detection Method Based on Federated Learning and Convolutional Neural Network [J]. Netinfo Security, 2020, 20(4): 47-54. |
[2] | Wenhua LUO, Caidian XU. Network Intrusion Detection Based on Improved MajorClust Clustering [J]. Netinfo Security, 2020, 20(2): 14-21. |
[3] | KANG Jian, WANG Jie, LI Zhengxu, ZHANG Guangda. A Model for Anomaly Intrusion Detection with Different Feature Extraction Strategies in IoT [J]. Netinfo Security, 2019, 19(9): 21-25. |
[4] | FENG Wenying, GUO Xiaobo, HE Yuanye, XUE Cong. Intrusion Detection Model Based on Feedforward Neural Network [J]. Netinfo Security, 2019, 19(9): 101-105. |
[5] | RAO Xuli, XU Pengna, CHEN Zhide, XU Li. Network Intrusion Detection with Incomplete Information Based on Deep Learning [J]. Netinfo Security, 2019, 19(6): 53-60. |
[6] | Jinghao LIU, Siping MAO, Xiaomei FU. Intrusion Detection Model Based on ICA Algorithm and Deep Neural Network [J]. Netinfo Security, 2019, 19(3): 1-10. |
[7] | Zheng TIAN, Shu LI, Yizhen SUN, Xi LI. Industrial Control System Intrusion Detection Model Based on S7 Protocol [J]. Netinfo Security, 2019, 19(11): 8-13. |
[8] | ZHANG Yang, YAO Yuangang. Research on Network Intrusion Detection Based on Xgboost [J]. 信息网络安全, 2018, 18(9): 102-105. |
[9] | ZHANG Gelin, LI Yong. Non-negative Matrix Factorization Optimization and Its Application in Network Intrusion Detection [J]. 信息网络安全, 2018, 18(8): 73-78. |
[10] | WEI Shuning, CHEN Xingru, JIAO Yong, WANG Jin. Research on the Application of AR-OSELM Algorithm in Network Intrusion Detection [J]. 信息网络安全, 2018, 18(6): 1-6. |
[11] | HE Xiang, LIU Sheng, JIANG Jiguo. Comparative Study of Intrusion Detection Methods Based on Machine Learning [J]. 信息网络安全, 2018, 18(5): 1-11. |
[12] | LIU Chaoling, ZHANG Yan, YANG Huiran, WU Hongjing. Design and Implementation of a DPDK-based Virtual NIPS [J]. 信息网络安全, 2018, 18(5): 41-51. |
[13] | CHEN Hongsong, WANG Gang, SONG Jianlin. Research on Anomaly Behavior Classification Algorithm of Internal Network User Based on Cloud Computing Intrusion Detection Data Set [J]. 信息网络安全, 2018, 18(3): 1-7. |
[14] | ZHAO Xu, HUANG Guangqiu, CUI Yanpeng, WANG Mingming. Improvement of Selection Operator in Multithreading Model for Multimedia Packets in NIDS [J]. 信息网络安全, 2018, 18(10): 45-50. |
[15] | CHENG Dongmei, YAN Biao, WEN Hui, SUN Limin. The Design and Implement of Rule Matching-based Distributed Intrusion Detection Framework for Industry Control System [J]. 信息网络安全, 2017, 17(7): 45-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||