Netinfo Security ›› 2024, Vol. 24 ›› Issue (5): 667-681.doi: 10.3969/j.issn.1671-1122.2024.05.002
Previous Articles Next Articles
LI Zhihua1(), CHEN Liang1, LU Xulin1, FANG Zhaohui2, QIAN Junhao3
Received:
2024-03-05
Online:
2024-05-10
Published:
2024-06-24
Contact:
LI Zhihua
E-mail:jswxzhli@aliyun.com
CLC Number:
LI Zhihua, CHEN Liang, LU Xulin, FANG Zhaohui, QIAN Junhao. Lightweight Detection Method for IoT Mirai Botnet[J]. Netinfo Security, 2024, 24(5): 667-681.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.05.002
[1] | STATISTA R D. Internet of Things-Number of Connected Devices Worldwide 2012-2025[EB/OL]. (2016-11-27)[2024-02-02]. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/. |
[2] |
ZHANG Ye, LI Zhihua, WANG Changjie. Kernel Density Estimation-Based Lightweight IoT Anomaly Traffic Detection Method[J]. Computer Science, 2021, 48(9): 337-344.
doi: 10.11896/jsjkx.200600108 |
张叶, 李志华, 王长杰. 基于核密度估计的轻量级物联网异常流量检测方法[J]. 计算机科学, 2021, 48(9): 337-344.
doi: 10.11896/jsjkx.200600108 |
|
[3] | ANTONAKAKIS M, APRIL T, BAILEY M, et al. UnderStanding the Mirai Botnet[C]// USENIX. 26th USENIX Security Symposium (USENIX Security 17). Berkeley: USENIX, 2017: 1093-1110. |
[4] | SHOBANA M, RATHI S. IoT Malware: An Analysis of IoT Device Hijacking[J]. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2018, 5: 2456-3307. |
[5] | KHAN A, SHARMA I. Tackling Okiru Attacks in IoT with AI-Driven Detection and Mitigation Strategies[C]// IEEE. 2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC). New York: IEEE, 2023: 336-341. |
[6] | ABBAS S G, HASHMAT F, SHAH G A, et al. Generic Signature Development for IoT Botnet Families[EB/OL]. (2021-09-01)[2024-02-25]. https://www.sciencedirect.com/science/article/abs/pii/S2666281721001323. |
[7] | BLAISE A, BOUET M, CONAN V, et al. Detection of Zero-Day Attacks: An Unsupervised Port-Based Approach[EB/OL]. (2020-10-01)[2024-02-25]. https://www.sciencedirect.com/science/article/abs/pii/S1389128620300761. |
[8] | PANDA M, ABD ALLAH A M, HASSANIEN A E. Developing an Efficient Feature Engineering and Machine Learning Model for Detecting IoT-Botnet Cyber Attacks[J]. IEEE Access, 2021, 9: 91038-91052. |
[9] | SAFITRI W A, AHMAD T, HOSTIADI D P. Analyzing Machine Learning-Based Feature Selection for Botnet Detection[C]// IEEE. 2022 1st International Conference on Information System & Information Technology (ICISIT). New York: IEEE, 2022: 386-391. |
[10] | LEFOANE M, GHAFIR I, KABIR S, et al. Machine Learning for Botnet Detection: An Optimized Feature Selection Approach[C]// ACM. The 5th International Conference on Future Networks & Distributed Systems. New York: ACM, 2022: 195-200. |
[11] | NIMBALKAR P, KSHIRSAGAR D. Feature Selection for Intrusion Detection System in Internet-of-Things (IoT)[J]. ICT Express, 2021, 7(2): 177-181. |
[12] | BAHSI H, NOMM S, TORRE F B L. Dimensionality Reduction for Machine Learning Based IoT Botnet Detection[C]// IEEE. 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). New York: IEEE, 2018: 1857-1862. |
[13] | GUERRA M A, BAHSI H, NOMM S. Hybrid Feature Selection Models for Machine Learning Based Botnet Detection in IoT Networks[C]// IEEE. 2019 International Conference on Cyberworlds (CW). New York: IEEE, 2019: 324-327. |
[14] | SHAFIQ M, TIAN Zhihong, BASHIR A K, et al. CorrAUC: A Malicious Bot-IoT Traffic Detection Method in IoT Network Using Machine-Learning Techniques[J]. IEEE Internet of Things Journal, 2020, 8(5): 3242-3254. |
[15] | LEE J, PARK D, LEE C. Feature Selection Algorithm for Intrusions Detection System Using Sequential forward Search and Random Forest Classifier[J]. KSII Transactions on Internet and Information Systems (TIIS), 2017, 11(10): 5132-5148. |
[16] | ALAM T, QAMARS, DIXIT A, et al. Genetic Algorithm: Reviews, Implementations, and Applications[EB/OL]. (2020-06-05)[2024-02-25]. https://arxiv.org/abs/2007.12673. |
[17] | LIU Xiangyu, DU Yanhui. Towards Effective Feature Selection for IoT Botnet Attack Detection Using a Genetic Algorithm[EB/OL]. (2023-02-07)[2024-02-25]. https://www.mdpi.com/2079-9292/12/5/1260. |
[18] | DESAI M G, SHI Yong, SUO Kun. IoT Bonet and Network Intrusion Detection Using Dimensionality Reduction and Supervised Machine Learning[C]// IEEE. 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). New York: IEEE, 2020: 316-322. |
[19] | SOE Y N, FENG Yaokai, SANTOSA P I, et al. Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture[EB/OL]. (2020-08-05)[2024-02-25]. https://www.mdpi.com/1424-8220/20/16/4372. |
[20] | ALSHEHRI M S, AHMAD J, ALMAKDI S, et al. SkipGateNet: A Lightweight CNN-LSTM Hybrid Model with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT[J]. IEEE Access, 2024, 12(12): 35521-35538. |
[21] | LUU C D, NGUYEN V Q, PHAM T S, et al. A Zero-Shot Deep Learning Approach for Unknown IoT Botnet Attack Detection[C]// IEEE. 2023 RIVF International Conference on Computing and Communication Technologies (RIVF). New York: IEEE, 2023: 278-283. |
[22] | XU Zhaozhao, SHEN Derong, NIE Tiezheng, et al. Hybrid Feature Selection Algorithm Combining Information Gain Ratio and Genetic Algorithm[J]. Journal or Software, 2022, 33(3): 1128-1140. |
许召召, 申德荣, 聂铁铮, 等. 融合信息增益比和遗传算法的混合式特征选择算法[J]. 软件学报, 2022, 33(3): 1128-1140. | |
[23] |
PAUL A, MUKHERJEE D P, DAS P, et al. Improved Random Forest for Classification[J]. IEEE Transactions on Image Processing, 2018, 27(8): 4012-4024.
doi: 10.1109/TIP.2018.2834830 pmid: 29993742 |
[24] | KE Guolin, MENG Qi, FINLEY T, et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree[EB/OL]. (2017-12-04)[2024-02-25]. https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html. |
[25] | GOPIKA N, ME A M K. Correlation Based Feature Selection Algorithm for Machine Learning[C]// IEEE. 2018 3rd International Conference on Communication and Electronics Systems (ICCES). New York: IEEE, 2018: 692-695. |
[26] | VERGARA J R, ESTEVEZ P A. A Review of Feature Selection Methods Based on Mutual Information[J]. Neural Computing and Applications, 2014, 24: 175-186. |
[27] | LYU Yang, FENG Yaokai, SAKURAI K. A Survey on Feature Selection Techniques Based on Filtering Methods for Cyber Attack Detection[EB/OL]. (2023-03-15)[2024-02-25]. https://www.mdpi.com/2078-2489/14/3/191. |
[28] | HUANG C L, WANG C J. A GA-Based Feature Selection and Parameters Optimization for Support Vector Machines[J]. Expert Systems with Applications, 2006, 31(2): 231-240. |
[29] | ALEJANDRE F V, CORTES N C, ANAYA E A. Feature Selection to Detect Botnets Using Machine Learning Algorithms[C]// IEEE. 2017 International Conference on Electronics, Communications and Computers (CONIELECOMP). New York: IEEE, 2017: 1-7. |
[30] | WIYONO R T, CAHYANI N D W. Performance Analysis of Decision Tree C4.5 as a Classification Technique to Conduct Network Forensics for Botnet Activities in Internet of Things[C]// IEEE. 2020 International Conference on Data Science and Its Applications (ICoDSA). New York: IEEE, 2020: 1-5. |
[31] | IFTIKHAR S, AL-MADANI D, ABDULLAH S, et al. A Supervised Feature Selection Method for Malicious Intrusions Detection in IoT Based on Genetic Algorithm[J]. International Journal of Computer Science & Network Security, 2023, 23(3): 49-56. |
[32] | AN Ting. Application of Genetic Algorithm Based on F-Ratio Rule in Signal Feature Selection[C]// IEEE. 2017 10th International Symposium on Computational Intelligence and Design (ISCID). New York: IEEE, 2017: 492-495. |
[33] | LI Juan. A Feature Subset Selection Algorithm Based on Feature Activity and Improved GA[C]// IEEE. 2015 11th International Conference on Computational Intelligence and Security (CIS). New York: IEEE, 2015: 206-210. |
[34] | ABDI H, WILLIAMS L J. Normalizing Data[J]. Encyclopedia of Research Design, 2010, 1: 935-938. |
[35] | CHEN Tianqi, GUESTRIN C. XGBoost: A Scalable Tree Boosting System[C]// ACM. Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: ACM,2016: 785-794. |
[36] | HAN Lu, LI Wenjun, SU Zhi. An Assertive Reasoning Method for Emergency Response Management Based on Knowledge Elements C4.5 Decision Tree[J]. Expert Systems with Applications, 2019, 122: 65-74. |
[37] | MEIDAN Y, BOHADANA M, MATHOV Y, et al. N-Baiot—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders[J]. IEEE Pervasive Computing, 2018, 17(3): 12-22. |
[1] | GU Guomin, CHEN Wenhao, HUANG Weida. A Covert Tunnel and Encrypted Malicious Traffic Detection Method Based on Multi-Model Fusion [J]. Netinfo Security, 2024, 24(5): 694-708. |
[2] | TU Xiaohan, ZHANG Chuanhao, LIU Mengran. Design and Implementation of Malicious Traffic Detection Model [J]. Netinfo Security, 2024, 24(4): 520-533. |
[3] | XU Zirong, GUO Yanping, YAN Qiao. Malicious Software Adversarial Defense Model Based on Feature Severity Ranking [J]. Netinfo Security, 2024, 24(4): 640-649. |
[4] | ZHONG Jing, FANG Bing, ZHU Jiang. Recent Research of Feature Selection Algorithms Based on Sparse Matrix Structure [J]. Netinfo Security, 2024, 24(3): 352-362. |
[5] | ZHANG Qiang, HE Junjiang, LI Wenshan, LI Tao. Anomaly Traffic Detection Based on Deep Metric Learning [J]. Netinfo Security, 2024, 24(3): 462-472. |
[6] | YIN Chunyong, JIANG Yiyang. Differential Privacy Trajectory Protection Model Based on Personalized Spatiotemporal Clustering [J]. Netinfo Security, 2024, 24(1): 80-92. |
[7] | LIU Yuxiao, CHEN Wei, ZHANG Tianyue, WU Lifa. Explainable Anomaly Traffic Detection Based on Sparse Autoencoders [J]. Netinfo Security, 2023, 23(7): 74-85. |
[8] | GUO Rui, WEI Xin, CHEN Li. An Outsourceable and Policy-Hidden Attribute-Based Encryption Scheme in the IIoT System [J]. Netinfo Security, 2023, 23(3): 1-12. |
[9] | PENG Cheng, FAN Wei, ZHU Dali, YANG Fen. Research on Man-in-the-Middle Attack Detection in LTE Access Network Based on Weighted Bayesian Classifier [J]. Netinfo Security, 2023, 23(2): 1-10. |
[10] | LIU Xiangyu, LU Tianliang, DU Yanhui, WANG Jingxiang. Lightweight IoT Intrusion Detection Method Based on Feature Selection [J]. Netinfo Security, 2023, 23(1): 66-72. |
[11] | LANG Bo, XIE Chong, CHEN Shaojie, LIU Hongyu. Fast-Flux Malicious Domain Name Detection Method Based on Multimodal Feature Fusion [J]. Netinfo Security, 2022, 22(4): 20-29. |
[12] | WU Kehe, CHENG Rui, JIANG Xiaochen, ZHANG Jiyu. Security Protection Scheme of Power IoT Based on SDP [J]. Netinfo Security, 2022, 22(2): 32-38. |
[13] | SONG Jing, DIAO Run, ZHOU Jie, QI Jianhuai. The Optimization Method of Industrial Control System Functional Safety and Information Security Policy [J]. Netinfo Security, 2022, 22(11): 68-76. |
[14] | ZHU Tao, XIA Lingling, LI Penghui, XU Zhongyi. Analysis of Botnet Attack Data Based on Log [J]. Netinfo Security, 2022, 22(10): 82-90. |
[15] | LI Yanlin, CAI Manchun, LU Tianliang, XI Rongkang. A Website Fingerprinting Attack Method via Convolutional Neural Network Optimized by Genetic Algorithm [J]. Netinfo Security, 2021, 21(9): 59-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||