[1] |
HU Jiaojiao, WANG Xiaofeng, ZHANG Meng, et al. Time-series Data Anomaly Detection Method Based on Deep Learning[J]. Information and Control, 2019,48(1):1-8.
doi: 10.1016/S0019-9958(81)90558-1
URL
|
|
胡姣姣, 王晓峰, 张萌, 等. 基于深度学习的时间序列数据异常检测方法[J]. 信息与控制, 2019,48(1):1-8.
|
[2] |
WANG Teng, JIAO Xuewei, GAO Yang. An Anomaly Detection Algorithm Based on Attention-GRU and iForest for Periodic Time Series[J]. Computer Engineering and Science, 2019,41(12):2217-2222.
|
|
王腾, 焦学伟, 高阳. 一种基于Attention-GRU和iForest的周期性时间序列异常检测算法[J]. 计算机工程与科学, 2019,41(12):2217-2222.
|
[3] |
MARTINS H, PALMA L, CARDOSO A, et al. A Support Vector Machine Based Technique for Online Detection of Outliers in Transient Time Series[EB/OL]. https://www.researchgate.net/publication/308106728_A_support_vector_machine_based_technique_for_online_detection_of_outliers_in_transient_time_series, 2020-5-15.
|
[4] |
CHENG Yanyun, ZHANG Shouchao, YANG Yang. Research on Time Series Outlier Detection Based on Big Data[J]. Computer Technology and Development, 2016,26(5):139-144.
|
|
程艳云, 张守超, 杨杨. 基于大数据的时间序列异常点检测研究[J]. 计算机技术与发展, 2016,26(5):139-144.
|
[5] |
ZHANG Rixin, ZHU Yuelong, WAN Dingsheng, et al. Research on Two-stage Anomaly Detection Method Based on Feature Vector[J]. Information Technology, 2019,43(11):67-71, 77.
|
|
张日新, 朱跃龙, 万定生, 等. 基于特征向量的两阶段异常检测方法研究[J]. 信息技术, 2019,43(11):67-71,77.
|
[6] |
AYMEN A, ABDENNACEUR K, ADEL M. Outlier Detection for Wireless Sensor Networks Using Density-Based Clustering Approach[J]. Wireless Sensor Systems, 7(4):83-90.
|
[7] |
SUN Jianshu, LOU Yuansheng, CHEN Yujun. Detection of Outliers in Hydrological Time Series Based on ARIMA-SVR[J]. Computer and Digital Engineering, 2018,46(2):225-230.
|
|
孙建树, 娄渊胜, 陈裕俊. 基于ARIMA-SVR的水文时间序列异常值检测[J]. 计算机与数字工程, 2018,46(2):225-230.
|
[8] |
CHEN Xingshu, JIANG Tianyu, ZENG Xuemei, et al. Network Anomaly Detection Based on Multidimensional Time Series Analysis[J]. Engineering Science and Technology, 2017,49(1):144-150.
|
|
陈兴蜀, 江天宇, 曾雪梅, 等. 基于多维时间序列分析的网络异常检测[J]. 工程科学与技术, 2017,49(1):144-150.
|
[9] |
PENA E H M, JUNIOR S B, RODRIGUES J J P C, et al. Anomaly Detection Using Digital Signature of Network Segment with Adaptive ARIMA Model and Paraconsistent Logic[EB/OL]. https://www.researchgate.net/publication/263542880_Anomaly_detection_using_digital_signature_of_network_segment_with_adaptive_ARIMA_model_and_Paraconsistent_Logic, 2020-5-15.
|
[10] |
HOCHENBAUM J, VALLIS O S, KEJARIWAL A. Automatic Anomaly Detection in the Cloud Via Statistical Learning[EB/OL]. https://www.researchgate.net/publication/316471104_Automatic_Anomaly_Detection_in_the_Cloud_Via_Statistical_Learning, 2020-5-15.
|
[11] |
MA Jiayu, HAN Zhaozhou. Simulation and Testing of Loss Simulation Model[J]. Statistics and Decision, 2017,17(6):27.
|
|
马佳羽, 韩兆洲. 复杂季节时间序列模型研究[J]. 统计与决策, 2017,17(6):27.
|
[12] |
ROSNER, BERNARD. Percentage Points for A Generalized ESD Many-Outlier Procedure[J]. Technometrics, 1983,25(2):165-172.
doi: 10.1080/00401706.1983.10487848
URL
|