Netinfo Security ›› 2019, Vol. 19 ›› Issue (11): 24-35.doi: 10.3969/j.issn.1671-1122.2019.11.004
Previous Articles Next Articles
ZHU Haiqi, JIANG Feng
Received:
2019-06-13
Online:
2019-11-10
CLC Number:
ZHU Haiqi, JIANG Feng. Research and Analysis of Anomaly Detection Technology for Operation and Maintenance Data in the Era of Artificial Intelligence[J]. Netinfo Security, 2019, 19(11): 24-35.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2019.11.004
[1] PEI Dan, ZHANG Shenglin, PEI Changhua.Intelligent Operation and Maintenance Based on Machine Learning[J]. Communications of CCF, 2017, 13(12): 67-73. 裴丹,张圣林,裴昶华.基于机器学习的智能运维[J].中国计算机学会通讯,2017,13(12):67-73. [2] LIU Dapeng, ZHAO Youjian, XU Haowen, et al.Opprentice: Towards Practical and Automatic Anomaly Detection through Machine Learning[C]//ACM. 15th Internet Measurement Conference, October 28-30, 2015, Tokyo, Japan. New York: ACM, 2015: 211-224. [3] LAPTEV N, AMIZADEH S, FLINT I.Generic and Scalable Framework for Automated Time-series Anomaly Detection[C]//ACM. 21th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, August 10-13, 2015, Sydney, Australia. New York: ACM, 2015: 1939-1947. [4] HAWKINS S, HE Hongxing, WILLIAMS G J, et al.Outlier Detection Using Replicator Neural Networks[M]//Springer. Data Warehousing and Knowledge Discovery. Heidelberg: Springer-Verlag, 2002: 170-180. [5] CHANDOLA V, BANERJEE A, KUMAR V.Anomaly Detection: A Survey[J]. ACM Computing Surveys, 2009, 41(3): 1-58. [6] KUMAR V.Parallel and Distributed Computing for Cybersecurity[J]. IEEE Distributed Systems Online, 2005, 6(10): 1. [7] SPENCE C, PARRA L, SAJDA P.Detection, Synthesis and Compression in Mammographic Image Analysis with a Hierarchical Image Probability Model[C]//IEEE. Mathematical Methods in Biomedical Image Analysis, December 9-10, 2001, Kauai, HI, USA. NJ: IEEE, 2001: 3. [8] FUJIMAKI R, YAIRI T, MACHIDA K.An Approach to Spacecraft Anomaly Detection Problem Using Kernel Feature Space[C]//ACM. 11th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, August 21-24, 2005, Chicago, lllinoism, USA. New York: ACM, 2005: 401-410. [9] ADEREMI O, ANDRONICUS A A.A Survey of Machine-learning and Nature-inspired Based Credit Card Fraud Detection Techniques[J]. International Journal of System Assurance Engineering and Management, 2017, 8(2): 937-953. [10] KWON D, KIM H, KIM J, et al.A Survey of Deep Learning-based Network Anomaly Detection[J]. Cluster Computing, 2019, 22(1): 949-961. [11] LITJENS G, KOOI T, BEJNORDI B E, et al.A Survey on Deep Learning in Medical Image Analysis[J]. Medical Image Analysis, 2017, 42: 60-88. [12] MOHAMMADI M, ALA A F, SAMEH S, et al.Deep Learning for IoT Big Data and Streaming Analytics: A Survey[J]. IEEE Communications Surveys & Tutorials, 2018, 1: 1-40. [13] BALL J E, DEREK T A, CHAN C S.Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools, and Challenges for the Community[J]. Journal of Applied Remote Sensing, 2017, 11(4): 1-64. [14] KIRAN B, DILIP T, RANJITH P.An Overview of Deep Learning Based Methods for Unsupervised and Semi-supervised Anomaly Detection in Videos[J]. Journal of Imaging, 2018, 4(2): 36-42. [15] NICK D, HAFFNER P, KRISHNAMURTHY E, et al.Rule-based Anomaly Detection on IP Flows[C]//IEEE. 28th IEEE International Conference on Computer Communications, April 19-25, 2009, Rio de Janeiro, Brazil. NJ: IEEE, 2009: 424-432. [16] LI Lei, YANG Dezhang, SHEN Fangcheng.A Novel Rule-based Intrusion Detection System Using Data Mining[C]//IEEE. Computer Science and Information Technology(ICCSIT), 2010 3rd IEEE International Conference on, July 9-11, 2010, Chengdu, China. NJ: IEEE. 2010: 169-172. [17] KHAN M S A. Rule-based Network Intrusion Detection Using Genetic Algorithm[J]. International Journal of Computer Applications, 2011, 18(8): 26-29. [18] ANSCOMBE F J.Rejection of Outliers[J]. Technometrics, 1960, 2(2): 123-146. [19] SOULE A, SALAMATIAN K, TAFT N.Combining Filtering and Statistical Methods for Anomaly Detection[C]//ACM. 5th ACM SIGCOMM Conference on Internet Measurement, August 22-26, 2005, Philadelphia, PA. New York: ACM, 2005: 1-14. [20] PINCOMBE B.Anomaly Detection in Time Series of Graphs Using ARMA Processes[J]. Asor Bulletin, 2005, 24(1): 67-75. [21] XU Chengcheng, LI Zhibin, WANG Wei.Short-term Traffic Flow Prediction Using a Methodology Based on Autoregressive Integrated Moving Average and Genetic Programming[J]. Transport, 2016, 31(3): 343-358. [22] SHI Yantao.Holter-winter Forecast Model of Inflow Runoff of Dahuofang Reservoir: Also a Discussion with Fu Wenyi[J]. Journal of Liaodong University(Natural Sciences), 2017, 24(2): 147-153. 石岩涛. 大伙房水库入库径流的Holter-winter预报模型——兼与付文艺老师商榷[J]. 辽东学院学报(自然科学版),2017,24(2):147-153. [23] CASTRO-NETO M, JEONG Y S, JEONG M K, et al.Online-svr for Short-term Traffic Flow Prediction under Typical and Atypical Traffic Conditions[J]. Expert Systems with Applications. 2009, 36: 164-173. [24] GOLDSTEIN M, DENGEL A.Histogram-based Outlier Score(HBOS): A Fast Unsupervised Anomaly Detection Algorithm[C]//IEEE. Poster and Demo Track 35th German Conference on Artificial Intelligence(KI2012), September 24-25, 2012, Saarbrücken, Germany. NJ: IEEE, 2012: 59-63. [25] LAPTEV N, AMIZADEH S, FLINT I.Generic and Scalable Framework for Automated Time-series Anomaly Detection[C]//ACM. 21th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, August 10-13, 2015, Sydney, Australia. New York: ACM, 2015: 1939-1947. [26] KHREICH W, KHOSRAVIFAR B, HAMOU-LHADJ A, et al.An Anomaly Detection System Based on Variable N-gram Features and One-class SVM[J]. Information and Software Technology, 2017, 91: 186-197. [27] WANG Guiping, YANG Jianxi, LI Ren.Imbalanced SVM-based Anomaly Detection Algorithm for Imbalanced Training Datasets[J]. Etri Journal, 2017, 39(5): 621-631. [28] YANG Xingwei, LATECKI L J, POKRAJAC D.Outlier Detection with Globally Optimal Exemplar-based GMM[C]//SDM. International Conference on Data Mining, April 30 - May 2, 2009, Sparks, Nevada, USA. New York: SDM, 2009: 145-154. [29] RAMASWAMY S, RASTOGI R, SHIM K.Efficient Algorithms for Mining Outliers from Large Data Sets[C]//ACM. SIGMOD International Conference on Management of Data. May 16-18, 2000, Dallas, Texas, USA. New York: ACM, 2000: 427-438. [30] TANG Jian, CHEN Zhixiang, FU A W, et al.Enhancing Effectiveness of Outlier Detections for Low Density Patterns[M]// Springer. Advance in Knowledge Discovery and Data Mining. Heidelberg: Springer-Verlag, 2002: 535-548. [31] JIN Wen, TUNG A K H, HAN Jiawei, et al. Ranking Outliers Using Symmetric Neighborhood Relationship[M]// Springer. Advances in Knowledge Discovery and Data Mining. Heidelberg: Springer-Verlag, 2006: 577-593. [32] LIU F T, TING Kaiming, ZHOU Zhihua.Isolation-based Anomaly Detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): 1-39. [33] ARYAL S, TING Kaiming, WELLS J R, et al.Improving iForest with Relative Mass[M]//Springer. Advances in Knowledge Discovery and Data Mining. Cham: Springer, 2014: 510-521. [34] JAVAID A Y, NIYAZ Q, SUN Weiqing, et al.A Deep Learning Approach for Network Intrusion Detection System[C]//ACM. 9th EAI International Conference on Bio-inspired Information and Communications Technologies, December 3- 5, 2015, New York City, United States. New York: ACM, 2015: 21-26. [35] PENG Huankai, MARCULESCU R.Multi-scale Compositionality: Identifying the Compositional Structures of Social Dynamics Using Deep Learning[J]. PloS one, 2015, 10(4): 45-57. [36] CHALAPATHY R, BORZESHI E Z, PICCARDI M. An Investigation of Recurrent Neural Architectures for Drug Name Recognition[EB/OL]. https://www.aclweb.org/anthology/W16-6101/, 2019-4-28. [37] CORREA B A. Building AI Applications using Deep Learning[EB/OL]. https://blog.easysol.net/wp-content/uploads/2017/06/image1.png, 2019-4-28. [38] WULSIN D, BLANCO J, MANI R, et al.Semi-supervised Anomaly Detection for EEG Waveforms Using Deep Belief Nets[C]//IEEE. 2010 9th International Conference on Machine Learning and Applications, December 18-21, 2011, Honolulu, USA. NJ: IEEE, 2011: 436-441. [39] NADEEM M, MARSHALL O, SINGH S, et al.Semi-supervised Deep Neural Network for Network Intrusion Detection[C]//IEEE. ICACCI 2017 Sixth International Conference on Advances in Computing, Communications and Informatics, September 13-16, 2017, Manipal, India. NJ: IEEE, 2016: 454-467. [40] SONG Hongchao, JIANG Zhuqing, MEN Aidong.A Hybrid Semi-supervised Anomaly Detection Model for High-dimensional Data[J]. Computational Intelligence and Neuroscience, 2017, 17: 1-9. [41] PATTERSON J, GIBSON A.Deep Learning: A Practitioner’s Approach[M]. Sebastopol: O’Reilly Media, Inc., 2017. [42] TUOR A, KAPLAN S, HUTCHINSON B, et al. Deep Learning for Unsupervised Insider Threat Detection in Structured Cybersecurity Data Streams[EB/OL]. https://arxiv.org/abs/1710.00811, 2019-4-28. [43] WOLD S, ESBENSEN K, GELADI P.Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1-3): 37-52. [44] CORTES C, VAPNIK V.Support-vector Networks[J]. Machine Learning, 1995, 20(3): 273-297. [45] LIU F T, TING Kaiming, ZHOU Zhihua.Isolation Forest[C]//IEEE. The 2008 Eighth IEEE International Conference on Data Mining, December 15- 19, 2008, Pisa, Italy. NJ: IEEE, 2008: 413-422. [46] SUTSKEVER I, HINTON G E, TAYLOR G W.The Recurrent Temporal Restricted Boltzmann Machine[J]. Advances in Neural Information Processing Systems, 2008, 20: 1601-1608. [47] SALAKHUTDINOV R, LAROCHELLE H.Efficient Learning of Deep Boltzmann Machines[C]//IEEE. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, May 13-15, 2010, Sardinia, Italy. NJ: IEEE, 2010: 693-700. [48] VINCENT P, LAROCHELLE H, BENGIO Y, et al.Extracting and Composing Robust Features with Denoising Autoencoders[C]//ACM. The 25th International Conference on Machine Learning, July 5- 9, 2008, Helsinki, Finland. New York: ACM, 2008: 1096-1103. [49] RODRIGUEZ P, WILES J, ELMAN J L.A Recurrent Neural Network that Learns to Count[J]. Connection Science, 1999, 11(1): 5-40. [50] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural Architectures for Named Entity Recognition[EB/OL]. https://arxiv.org/abs/1603.01360, 2019-4-28. [51] FARHADI A, HEJRATI M, SADEGHI M A, et al.Every Picture Tells a Atory: Generating Sentences from Images[J]. Lecture Notes in Computer Science, 2010, 21(10): 15-29. [52] RAKTHANMANON T, CAMPANA B, MUEEN A, et al.Keogh Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping[C]//ACM. 18th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, August 12-16, 2012, Beijing, China. New York: ACM, 2012: 262-270. [53] PEI Jian, HAN Jiawei, LAKSHMANAN L V S. Mining Frequent Item Sets with Convertible Constraints[C]//IEEE. 17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany. NJ: IEEE, 2001: 433-442. [54] PEI Jian, HAN Jiawei, MORTAZAVIASL B, et al.PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-projected Pattern Growth[C]//IEEE. International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany. NJ: IEEE, 2001: 215. [55] LIU F T, TING Kaiming, ZHOU Zhihua.Isolation Forest[C]//IEEE. 8th IEEE International Conference on Data Mining, December 6-9, 2009, Miami, Florida, USA. NJ: IEEE, 2009: 413-422. [56] Breunig M M, KRIEGEL H P, NG R T, et al.LOF: Identifying Density-based Local Outliers[J]. Acm Sigmod Record, 2000, 29(2): 93-104. [57] PANG Guansong, CAO Longbing, CHEN Ling.Outlier Detection in Complex Categorical Data by Modeling the Feature Value Couplings[C]//IJCAI. International Joint Conference on Artificial Intelligence, July 9-15, 2016, New York, USA. New York: ACM, 2016: 1902-1908. [58] MA Minghua, ZHANG Shenglin, PEI Dan, et al.Robust and Rapid Adaption for Concept Drift in Software System Anomaly Detection[C]//IEEE. 29th IEEE International Symposium on Software Reliability Engineering ISSRE 2018, October 15-18, 2018, Memphis, TN, USA. NJ: IEEE, 2018: 13-24. [59] DING Rui, WANG Qiang, DANG Yingnong.YADING: Fast Clustering of Large-scale Time Series Data[C]//IEEE. International Conference on Very Large Data Bases, August 31, 2015, Kohala Coast, Hawaii, USA. NJ: IEEE, 2015: 154-165. [60] SHERVASHIDZE N, BACH F.Learning the Structure for Structured Sparsity[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4894-4902. [61] ZHANG Quanshi, ZHU Songchun.Visual Interpretability for Deep Learning: A survey[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1): 27-39. [62] RIBEIRO M T, SINGH S, GUESTRIN C.Explaining the Predictions of Any Classifier[C]//ACM. 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, August 24-27, 2016, San Francisco, USA. New York: ACM, 2016: 1135-1144. |
[1] | WANG Rong, MA Chunguang, WU Peng. An Intrusion Detection Method Based on Federated Learning and Convolutional Neural Network [J]. Netinfo Security, 2020, 20(4): 47-54. |
[2] | XIE Yongheng, FENG Yubo, DONG Qingfeng, WANG Mei. Research on Data Ingestion Method Based on Deep Learning [J]. Netinfo Security, 2019, 19(9): 36-40. |
[3] | GUO Min, ZENG Yingming, YU Ran, WU Zhaoxiong. Research on Defense Technology of Adversarial Attacks Based on Adversarial Training and VAE-repairing [J]. Netinfo Security, 2019, 19(9): 66-70. |
[4] | MA Chunguang, GUO Yaoyao, WU Peng, LIU Haibo. Review of Image Enhancement Based on Generative Adversarial Networks [J]. 信息网络安全, 2019, 19(5): 10-12. |
[5] | WANG Wei, SHEN Xudong. Research on Transfer Time Series Anomaly Detection Algorithm Based on Instance [J]. 信息网络安全, 2019, 19(3): 11-18. |
[6] | FANG Yong, ZHU Guangxiatian, LIU Luping, JIA Peng. Research on Browser Fuzz Sample Generation Technology Based on Deep Learning [J]. 信息网络安全, 2019, 19(3): 26-33. |
[7] | YANG Weichao, GUO Yuanbo, ZHONG Ya, ZHEN Shuaihui. IoT Traffic Anomaly Detection Based on Device Type Identification and BP Neural Network [J]. Netinfo Security, 2019, 19(12): 53-63. |
[8] | DENG Hailian, LIU Yujing, GE Yixuan, SU Jinshu. Research on Inter-domain Routing Anomaly Detection Technology [J]. Netinfo Security, 2019, 19(11): 63-70. |
[9] | QIU Yue, LI Siqi. Security Threat Analysis and Solutions for the Development and Application of Artificial Intelligence [J]. 信息网络安全, 2018, 18(9): 35-41. |
[10] | LI Wei, DI Xiaoxiao, WANG Di, LI Yunchun. Subgraph-based Network Behavior Models and Anomaly Detection for Server [J]. 信息网络安全, 2018, 18(2): 1-9. |
[11] | HE Li, YAO Yuanhui. Detection and Recognition Strategy for Anomaly of Cloud Virtual Machine Based on Context Clustering [J]. 信息网络安全, 2018, 18(12): 54-65. |
[12] | DUAN Dagao, XIE Yongheng, GAI Xinxin, LIU Zhanbin. A Rumor Detection Model Based on Neural Network [J]. 信息网络安全, 2017, 17(9): 134-137. |
[13] | ZHAO Gang, YAO Xingren. Anomaly Detection Model Based on User Portrait [J]. 信息网络安全, 2017, 17(7): 18-24. |
[14] | REN Hao, LUO Senlin, PAN Limin, GAO Junfeng. Research on the Algorithm of Short Text Representation Based on Graph Structure [J]. 信息网络安全, 2017, 17(3): 46-52. |
[15] | WU Xin, YAN Yuesong, LIU Xiaoran. Program Behavior Anomaly Detection Method Based on Improved HMM [J]. 信息网络安全, 2016, 16(9): 108-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||