信息网络安全 ›› 2025, Vol. 25 ›› Issue (10): 1554-1569.doi: 10.3969/j.issn.1671-1122.2025.10.007

• 理论研究 • 上一篇    下一篇

基于累积量与深度学习融合的水下调制识别模型

李古月1,2, 张子豪1(), 毛承海1, 吕锐1   

  1. 1.东南大学网络空间安全学院,南京 211189
    2.网络通信与安全紫金山实验室,南京 211111
  • 收稿日期:2025-07-02 出版日期:2025-10-10 发布日期:2025-11-07
  • 通讯作者: 张子豪 E-mail:220235436@seu.edu.cn
  • 作者简介:李古月(1989—),女,江苏,副教授,博士,CCF会员,主要研究方向为物理层安全、无线通信安全|张子豪(2000—),男,江苏,硕士研究生,主要研究方向为水声通信、射频指纹|毛承海(2005—),男,山东,本科,主要研究方向为图像处理、深度学习|吕锐(1986—),男,江苏,博士研究生,主要研究方向为网络信息安全
  • 基金资助:
    国家自然科学基金(62171121)

A Cumulant-Deep Learning Fusion Model for Underwater Modulation Recognition

LI Guyue1,2, ZHANG Zihao1(), MAO Chenghai1, LYU Rui1   

  1. 1. School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
    2. Purple Mountain Laboratories for Network Communication and Security, Nanjing 211111, China
  • Received:2025-07-02 Online:2025-10-10 Published:2025-11-07
  • Contact: ZHANG Zihao E-mail:220235436@seu.edu.cn

摘要:

在复杂严苛的水声通信环境中,调制识别技术对于提升水下通信系统的抗截获能力和信息安全具有重要意义。然而,水声信道中的非线性、多径效应与强噪声干扰对自动调制识别任务构成了严峻挑战。为应对这些挑战,文章提出了一种融合小波去噪与高阶累积量特征的深度调制识别模型(CRT)。该模型通过优化残差网络与Transformer编码器结构,分别构建局部与全局时序频域特征模型,并基于水声信号时频分布特性融合高阶累积量特征,在9类典型水下调制方式下实现了93.56%的平均识别准确率,较当前最优模型提升了2.4%。特别是在-10 dB~-2 dB的低信噪比环境下,CRT模型识别准确率提升超过10%,验证了该模型在复杂水声场景下的有效性与实用价值。

关键词: 自动调制识别, 水下声学, 小波变换, 高阶累积量, 深度学习

Abstract:

In complex and demanding underwater acoustic communication environments, modulation recognition technology is crucial for improving the anti-interception capabilities and information security of underwater communication systems. However, nonlinearity, multipath effects, and strong noise interference in underwater acoustic channels pose significant challenges to automatic modulation recognition (AMR). To address these challenges, this paper proposed a deep modulation recognition model (CRT) that integrates wavelet denoising and high-order cumulants. This model optimized the residual network (ResNet) and Transformer encoder (Trans-Encoder) architectures to model local and global temporal features, respectively. Furthermore, it integrated high-order cumulants based on the time-frequency distribution of underwater acoustic signals. This model achieves an average recognition accuracy of 93.56% for nine typical underwater modulation modes, a 2.4% improvement over the current best model. In particular, in low signal-to-noise ratio (SNR) environments of -10 dB to -2 dB, the recognition accuracy improves by over 10%, demonstrating the effectiveness and practical value of the CRT model in complex underwater acoustic scenarios.

Key words: automatic modulation recognition, underwater acoustics, wavelet transform, higher-order cumulants, deep learning

中图分类号: