Netinfo Security ›› 2025, Vol. 25 ›› Issue (6): 872-888.doi: 10.3969/j.issn.1671-1122.2025.06.003
Previous Articles Next Articles
XUN Yijie1,2, CUI Jiarong1,2, MAO Bomin1,2(
), QIN Junman1,2
Received:2025-02-25
Online:2025-06-10
Published:2025-07-11
CLC Number:
XUN Yijie, CUI Jiarong, MAO Bomin, QIN Junman. Intrusion Detection System for the Controller Area Network Bus of Intelligent Vehicles Based on Federated Learning[J]. Netinfo Security, 2025, 25(6): 872-888.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.06.003
| 车辆 | 指标 | 攻击类型 | |||||
|---|---|---|---|---|---|---|---|
| 总线 关闭 | 欺骗 | SOME | 模糊(Fuzzy) | 伪装(Masquerade) | 重放(Replay) | ||
| 别克 君威 | 准确率 | 0.9966 | 0.9856 | 0.9482 | 0.9199 | 0.9479 | 0.9966 |
| 精确率 | 1 | 0.9756 | 0.9090 | 0.8651 | 0.9090 | 1 | |
| 召回率 | 0.9932 | 0.9960 | 0.9960 | 0.9949 | 0.9955 | 0.9960 | |
| FPR | 0 | 0.0249 | 0.0997 | 0.1551 | 0.0997 | 0 | |
| FNR | 0.0068 | 0.0040 | 0.0040 | 0.0051 | 0.0045 | 0.0040 | |
| 纳智捷U5 | 准确率 | 0.9882 | 0.9923 | 0.9748 | 0.9752 | 0.9931 | 0.9773 |
| 精确率 | 0.9839 | 0.9903 | 0.9584 | 0.9541 | 0.9887 | 0.9593 | |
| 召回率 | 0.9927 | 0.9943 | 0.9927 | 0.9984 | 0.9916 | 0.9968 | |
| FPR | 0.0162 | 0.0097 | 0.0431 | 0.0479 | 0.0114 | 0.0422 | |
| FNR | 0.0073 | 0.0057 | 0.0073 | 0.0016 | 0.0024 | 0.0032 | |
| 丰田 凯美瑞 | 准确率 | 0.9091 | 0.9666 | 0.9140 | 0.9123 | 0.9649 | 0.9718 |
| 精确率 | 0.8449 | 0.9320 | 0.8541 | 0.8517 | 0.9350 | 0.9496 | |
| 召回率 | 1 | 0.9979 | 0.9986 | 0.9993 | 0.9993 | 0.9972 | |
| FPR | 0.0918 | 0.0646 | 0.1706 | 0.0695 | 0.0695 | 0.0530 | |
| FNR | 0 | 0.0021 | 0.0014 | 0.0007 | 0 | 0.0028 | |
| [1] | Editorial Department of China Journal of Highway and Transport. Review on China’s Automotive Engineering Research Progress: 2023[J]. China Journal of Highway and Transport, 2023, 36(11): 1-192. |
|
《中国公路学报》编辑部. 中国汽车工程学术研究综述·2023[J]. 中国公路学报, 2023, 36(11): 1-192.
doi: 10.19721/j.cnki.1001-7372.2023.11.001 |
|
| [2] | MILLER C, VALASEK C. Remote Exploitation of an Unaltered Passenger Vehicle[J]. Black Hat USA, 2015, (S91): 1-91. |
| [3] | BARAN G. Vulnerabilities in Skoda & Volkswagen Cars Let Hackers Remotely Track Users[EB/OL]. (2024-12-12)[2025-02-23]. https://cybersecuritynews.com/vulnerabilities-skoda-volkswagen-cars. |
| [4] | YAN Minrui, LI Jiahao. Security Research on Mercedes-Benz: From Hardware to Car Control[J]. Black Hat USA, 2020, 2020: 1-81. |
| [5] | GB/T 38628-2020 Information Security Technology Cybersecurity Guide for Automotive Electronics Systems[S]. Beijing: Standards Press of China, 2020. |
| GB/T 38628-2020 信息安全技术汽车电子系统网络安全指南[S]. 北京: 中国标准出版社, 2020. | |
| [6] | GB/T 45181-2024 Security-Related Misbehavior Detection Mechanism for Connected Vehicles[S]. Beijing: Standards Press of China, 2024. |
| GB/T 45181-2024 车联网网络安全异常行为检测机制[S]. 北京: 中国标准出版社, 2024. | |
| [7] | JOHANSSON K H, TÖRNGREN M, NIELSEN L. Vehicle Applications of Controller Area Network[M]. Boston: Birkhäuser Boston, 2005. |
| [8] | DU Xinying, HE Mingshu, WANG Xiaojuan. A Feature Fusion-Based Controller Area Network Intrusion Detection Method[J]. Journal of Beijing University of Posts and Telecommunications, 2025, 48(2): 1-7. |
| 杜欣颖, 何明枢, 王小娟. 基于特征融合的控制器局域网入侵检测方法[J]. 北京邮电大学学报, 2025, 48(2): 1-7. | |
| [9] | CAI Zhiqiang, WANG Aohui, ZHANG Wenkai. 0-Days & Mitigations: Roadways to Exploit and Secure Connected BMW Cars[J]. Black Hat USA, 2019, 2019(39): 6-37. |
| [10] | KIM J H, SEO S H, HAI N T, et al. Gateway Framework for In-Vehicle Networks Based on CAN, FlexRay, and Ethernet[J]. IEEE transactions on vehicular technology, 2014, 64(10): 4472-4486. |
| [11] | WANG Wenwei, GUO Kaidi, CAO Wanke, et al. Review of Electrical and Electronic Architectures for Autonomous Vehicles: Topologies, Networking and Simulators[J]. Automotive Innovation, 2024, 7(1): 82-101. |
| [12] | LENARD T, BOLBOACA R. A Statefull Firewall and Intrusion Detection System Enforced with Secure Logging for Controller Area Network[C]// ACM. Proceedings of the 2021 European Interdisciplinary Cybersecurity Conference. New York: ACM, 2021: 39-45. |
| [13] | LUO Feng, HOU Shuo. Security Mechanisms Design of Automotive Gateway Firewall[R]. Detroit: SAE International, No. 2019-01-0481, 2019. |
| [14] | RATHORE M S, POONGODI M, SAURABH P, et al. A Novel Trust-Based Security and Privacy Model for Internet of Vehicles Using Encryption and Steganography[J]. Computers and Electrical Engineering, 2022, 102: 1-18. |
| [15] | AKIB A, ANIKA A, MOUKAHAL L, et al. Security Assessment of In-Vehicle Communication Protocols[J]. Vehicular Communications, 2023, 44: 1-20. |
| [16] | CHO K T, SHIN K G. Fingerprinting Electronic Control Units for Vehicle Intrusion Detection[C]// USENIX. 25th USENIX Security Symposium (USENIX Security 16). Berkeley: USENIX, 2016: 911-927. |
| [17] | YOUNG C, OLUFOWOBI H, BLOOM G, et al. Automotive Intrusion Detection Based on Constant can Message Frequencies across Vehicle Driving Modes[C]// ACM. Proceedings of the ACM Workshop on Automotive Cybersecurity. New York: ACM, 2019: 9-14. |
| [18] | TAYLOR A, JAPKOWICZ N, LEBLANC S. Frequency-Based anomaly Detection for the Automotive CAN Bus[C]// IEEE. 2015 World Congress on Industrial Control Systems Security (WCICSS). New York: IEEE, 2015: 45-49. |
| [19] | CHOI W, JOO K, JO H J, et al. VoltageIDS: Low-Level Communication Characteristics for Automotive Intrusion Detection System[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(8): 2114-2129. |
| [20] | KNEIB M, HUTH C. Scission: Signal Characteristic-Based Sender Identification and Intrusion Detection in Automotive Networks[C]// ACM. 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 787-800. |
| [21] | WU Wufei, HUANG Yizhi, KURACHI R, et al. Sliding Window Optimized Information Entropy Analysis Method for Intrusion Detection on In-Vehicle Networks[J]. IEEE Access, 2018, 6: 45233-45245. |
| [22] | LI Yang, MOUBAYED A, HAMIEH I, et al. Tree-Based Intelligent Intrusion Detection System in Internet of Vehicles[C]// IEEE. 2019 IEEE Global Communications Conference (GLOBECOM). New York: IEEE, 2019: 1-6. |
| [23] | SONG H M, WOO J, KIM H K. In-Vehicle Network Intrusion Detection Using Deep Convolutional Neural Network[J]. Vehicular Communications, 2020, 21: 1-13. |
| [24] | DAVIS R I, BURNS A, BRIL R J, et al. Controller Area Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised[J]. Real-Time Systems, 2007, 35: 239-272. |
| [25] | KUANG Boyu, LI Yuze, GU Fangming, et al. Review of Internet of Vehicle Security Research: Threats, Countermeasures, and Future Prospects[J]. Journal of Computer Research and Development, 2023, 60(10): 2304-2321. |
| 况博裕, 李雨泽, 顾芳铭, 等. 车联网安全研究综述:威胁、对策与未来展望[J]. 计算机研究与发展, 2023, 60(10): 2304-2321. | |
| [26] | ZHOU Chuanxin, SUN Yi, WANG Degang, et al. Survey of Federated Learning Research[J]. Chinese Journal of Network and Information Security, 2021, 7(5): 77-92. |
| 周传鑫, 孙奕, 汪德刚, 等. 联邦学习研究综述[J]. 网络与信息安全学报, 2021, 7(5): 77-92. | |
| [27] | IEHIRA K, INOUE H, ISHIDA K. Spoofing Attack Using Bus-Off Attacks against a Specific ECU of the CAN Bus[C]// IEEE. 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC). New York: IEEE, 2018: 1-4. |
| [28] | YANG Yun, DUAN Zongtao, TEHRANIPOOR M. Identify a Spoofing Attack on an In-Vehicle CAN Bus Based on the Deep Features of an ECU Fingerprint Signal[J]. Smart Cities, 2020, 3(1): 17-30. |
| [29] | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// PMLR. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273-1282. |
| [30] | LI Tian, SAHU A K, ZAHEER M, et al. Federated Optimization in Heterogeneous Networks[J]. Proceedings of Machine Learning and Systems, 2020, 2: 429-450. |
| [31] | XIE Cong, KOYEJO S, GUPTA I. Asynchronous Federated Optimization[EB/OL]. (2019-04-10)[2025-02-23]. https://arxiv.org/abs/1903.03934. |
| [32] | MIRZAEE P H, SHOJAFAR M, CRUICKSHANK H, et al. CHFL: A Collaborative Hierarchical Federated Intrusion Detection System for Vehicular Networks[C]// IEEE. 2022 IEEE Symposium on Computers and Communications (ISCC). New York: IEEE, 2022: 1-7. |
| [33] | DRISS M, ALMOMANI I, HUMA Z E, et al. A Federated Learning Framework for Cyberattack Detection in Vehicular Sensor Networks[J]. Complex & Intelligent Systems, 2022, 8(5): 4221-4235. |
| [34] | MUZUN A, JAVED A, RANA O. A Robust Multi-Stage Intrusion Detection System for In-Vehicle Network Security Using Hierarchical Federated Learning[J]. Vehicular Communications, 2024, 49: 1-15. |
| [35] | LEE S, CHOI W, JO H J, et al. ErrIDS: An Enhanced Cumulative Timing Error-Based Automotive Intrusion Detection System[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12406-12421. |
| [36] | HOSSAIN M D, INOUE H, OCHIAI H, et al. LSTM-Based Intrusion Detection System for In-Vehicle Can Bus Communications[J]. IEEE Access, 2020, 8: 185489-185502. |
| [37] | SCHELL O, KNEIB M. VALID: Voltage-Based Lightweight Intrusion Detection for the Controller Area Network[C]// IEEE. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). New York: IEEE, 2021: 225-232. |
| [1] | DENG Dongshang, WANG Weiye, ZHANG Weidong, WU Xuangou. Layered Personalized Federated Learning Guided by Model Feature Orientation [J]. Netinfo Security, 2025, 25(6): 889-897. |
| [2] | ZHU Shuaishuai, LIU Keqian. A Masking-Based Selective Federated Distillation Scheme [J]. Netinfo Security, 2025, 25(6): 920-932. |
| [3] | LIU Chenfei, WAN Liang. CAN Bus Intrusion Detection Method Based on Spatio-Temporal Graph Neural Networks [J]. Netinfo Security, 2025, 25(3): 478-493. |
| [4] | LI Jiadong, ZENG Haitao, PENG Li, WANG Xiaoding. An Anonymous Routing Federated Learning Framework for Data Privacy Protection [J]. Netinfo Security, 2025, 25(3): 494-503. |
| [5] | XU Ruzhi, TONG Yumeng, DAI Lipeng. Research on Federated Learning Adaptive Differential Privacy Method Based on Heterogeneous Data [J]. Netinfo Security, 2025, 25(1): 63-77. |
| [6] | GUO Qian, ZHAO Jin, GUO Yi. Hierarchical Clustering Federated Learning Framework for Personalized Privacy-Preserving [J]. Netinfo Security, 2024, 24(8): 1196-1209. |
| [7] | JIANG Rong, LIU Haitian, LIU Cong. Unsupervised Network Intrusion Detection Method Based on Ensemble Learning [J]. Netinfo Security, 2024, 24(3): 411-426. |
| [8] | XUE Mingzhu, HU Liang, WANG Ming, WANG Feng. TAP Rule Processing System Based on Federated Learning and Blockchain Technology [J]. Netinfo Security, 2024, 24(3): 473-485. |
| [9] | LIN Yihang, ZHOU Pengyuan, WU Zhiqian, LIAO Yong. Federated Learning Backdoor Defense Method Based on Trigger Inversion [J]. Netinfo Security, 2024, 24(2): 262-271. |
| [10] | JIN Zhigang, DING Yu, WU Xiaodong. Federated Intrusion Detection Algorithm with Bilateral Correction Merging Gradient Difference [J]. Netinfo Security, 2024, 24(2): 293-302. |
| [11] | HE Zeping, XU Jian, DAI Hua, YANG Geng. A Review of Federated Learning Application Technologies [J]. Netinfo Security, 2024, 24(12): 1831-1844. |
| [12] | LAN Haoliang, WANG Qun, XU Jie, XUE Yishi, ZHANG Bo. Review of Research on Blockchain-Based Federated Learning [J]. Netinfo Security, 2024, 24(11): 1643-1654. |
| [13] | SA Qirui, YOU Weijing, ZHANG Yifei, QIU Weiyang, MA Cunqing. A Survey of Ownership Protection Schemes for Federated Learning Models [J]. Netinfo Security, 2024, 24(10): 1553-1561. |
| [14] | CHEN Jing, ZHANG Jian. A Data-Free Personalized Federated Learning Algorithm Based on Knowledge Distillation [J]. Netinfo Security, 2024, 24(10): 1562-1569. |
| [15] | WU Lizhao, WANG Xiaoding, XU Tian, QUE Youxiong, LIN Hui. Defense Strategies against Poisoning Attacks in Semi-Asynchronous Federated Learning [J]. Netinfo Security, 2024, 24(10): 1578-1585. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||