[1] |
BURSZTEIN E, MARTIN M, MITCHELL J. Text-Based CAPTCHA Strengths and Weaknesses[C]// ACM. In Proceedings of the 18th ACM Conference on Computer and Communications Security. New York: ACM, 2011: 125-138.
|
[2] |
SOUPIONIS Y, GRITZALIS D. Audio CAPTCHA: Existing Solutions Assessment and a New Implementation for VoIP Telephony[J]. Computers & Security, 2010, 29(5): 603-618.
|
[3] |
BURSZTEIN E, MARTIN M, MITCHELL J. Text-Based CAPTCHA Strengths and Weaknesses[C]// ACM. Proceedings of the 18th ACM Conference on Computer and Communications Security. New York: ACM, 2011: 125-138.
|
[4] |
DAS M S, RAO K R M, BALAJI P. Neural-Based Hit-Count Feature Extraction Method for Telugu Script Optical Character Recognition[J]. Innovations in Electronics and Communication Engineering, 2019(33): 479-486.
|
[5] |
SCHMIDHUBER J. Deep Learning in Neural Networks: An Overview[J]. Neural Networks, 2015(61): 85-117.
|
[6] |
GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: A Recurrent Neural Network for Image Generation[C]// ACM. Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York: ACM, 2015: 1462-1471.
|
[7] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[C]// IEEE. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
|
[8] |
LI Chuan, WAND M. Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis[C]// IEEE. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2479-2486.
|
[9] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[10] |
GATYS L A, ECKER A S, BETHGE M. Image Style Transfer Using Convolutional Neural Networks[C]// IEEE. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2414-2423.
|
[11] |
KWON H, YOON H, PARK K. CAPTCHA Image Generation Using Style Transfer Learning in Deep Neural Network[C]// Springer. Proceedings of the 20th World Conference on Information Security Applications (WISA 2019). Berlin: Springer, 2019: 234-246.
|
[12] |
HASAN W A. A Survey of Current Research on CAPTCHA[J]. International Journal of Computer Science and Applications, 2016, 7(3): 141-157.
|
[13] |
OSADCHY M, HERNANDEZ-CASTRO J, GIBSON S, et al. No Bot Expects the DeepCAPTCHA! Introducing Immutable Adversarial Examples, with Applications to CAPTCHA Generation[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2640-2653.
|
[14] |
HU Wei, ZHAO Wenlong, CHEN Lu, et al. An Improved JSMA Algorithm against Sample Attack Based on Logits Vector[J]. Netinfo Security, 2022, 22(3): 62-69.
|
|
胡卫, 赵文龙, 陈璐, 等. 基于Logits向量的JSMA对抗样本攻击改进算法[J]. 信息网络安全, 2022, 22(3): 62-69.
|
[15] |
LEI Yu, LIU Jia, LI Jun, et al. Research and Implementation of a Image Steganography Method Based on Conditional Generative Adversarial Networks[J]. Netinfo Security, 2021, 21(11): 48-57.
|
|
雷雨, 刘佳, 李军, 等. 一种基于条件生成对抗网络的图像隐写方法研究与实现[J]. 信息网络安全, 2021, 21(11): 48-57.
|
[16] |
MA Jun, WANG Xiaowu, ZHU Yongchuan, et al. Study on the Verification Code Anti-Crawler Mechanism Based on the Generation of Adversarial Samples[J]. Applied Science and Technology, 2021, 48(6): 45-50.
|
|
马军, 王效武, 朱永川, 等. 基于对抗样本生成的验证码反爬虫机制研究[J]. 应用科技, 2021, 48(6): 45-50.
|
[17] |
SHEN Yanyu, ZHANG Sanfeng, CAO Jiuxin. An Adversarial Sample-Based Security Enhancement Method for CAPTCHA[J]. Cyberspace Security, 2020, 11(8): 11-16.
|
|
沈言玉, 张三峰, 曹玖新. 一种基于对抗样本的验证码安全性增强方法[J]. 网络空间安全, 2020, 11(8): 11-16.
|