[1] |
KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases[J]. Knowledge and Information Systems, 2001,3(3):263-286.
doi: 10.1007/PL00011669
URL
|
[2] |
LIN J, KEOGH E, LONARDI S, et al. A Symbolic Representation of Time Series with Implications for Streaming Algorithms [C]//ACM. Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, June 13, 2003, San Diego, CA, USA. New York: ACM, 2003: 2-11.
|
[3] |
DING Xiaoou, YU Shengjian, WANG Muxian, et al. Anomaly Detection on Industrial Time Series Based on Correlation Analysis[J]. Journal of Software, 2020,31(3):726-747.
|
|
丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测[J]. 软件学报, 2020,31(3):726-747.
|
[4] |
LI Qianmu, WANG Yinhai, PU Ziyuan, et al. Time Series Association State Analysis Method for Attacks on The Smart Internet of Electric Vehicle Charging Network[J]. Transportation Research Record, 2019,2673(4):217-228.
|
[5] |
FUAD M M, MARTEAU P F. Enhancing the Symbolic Aggregate Approximation Method Using Updated Lookup Tables [C]//Springer. International Conference on Knowledge-based and Intelligent Information and Engineering Systems, September 8-10, 2010, Cardiff, UK. Berlin: Springer, 2010: 420-431.
|
[6] |
BAI Xue, XIONG Yun, ZHU Yangyong, et al. Time Series Representation: A Random Shifting Perspective [C]//Springer. International Conference on Web-Age Information Management, June 14-16, Beidaihe, China. Berlin: Springer, 2013: 37-50.
|
[7] |
MALINOWSKI S, GUYET T, QUINIOU R, et al. 1d-sax: A Novel Symbolic Representation for Time Series [C]//Springer. International Symposium on Intelligent Data Analysis, October 17-19, 2013, London, UK. Berlin: Springer, 2013: 273-284.
|
[8] |
YIN Ning, WANG Shanshan, HONG Shenda, et al. A Segment-Wise Method for Pseudo Periodic Time Series Prediction [C]//Springer. 2014 Advanced Data Mining and Applications - 10th International Conference, December 19-21, 2014, Guilin China. Berlin, Springer, 2014: 461-474.
|
[9] |
ZHAN Peng, CHEN Lin, CAO Luhui, et al. Network Traffic Anomaly Detection Based on Feature-based Symbolic Representation[J]. Journal of ZheJiang University (Engineering Science), 2020,54(7):1281-1288.
|
|
展鹏, 陈琳, 曹鲁慧, 等. 基于特征符号表示的网络异常流量检测算法[J]. 浙江大学学报(工学版), 2020,54(7):1281-1288.
|
[10] |
ZHANG Chuxu, SONG Dongjin, CHEN Yuncong, et al. A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data [C]//IEEE. Proceedings of the AAAI Conference on Artificial Intelligence, February 1, 2019, Honolulu, Hawaii, USA. New York: IEEE, 2019: 1409-1416.
|
[11] |
PHAM N D, LE Q L, DANG T K. Two Novel Adaptive Symbolic Representations for Similarity Search in Time Series Databases [C]//IEEE. 2010 12th International Asia-pacific Web Conference, April 6-8, 2010, Busan, Korea (South). New York: IEEE, 2010: 181-187.
|
[12] |
BARNAGHI P M, BAKAR A A, OTHMAN Z A. Enhanced Symbolic Aggregate Approximation Method for Financial Time Series Data Representation [C]//IEEE. 2012 6th International Conference on New Trends in Information Science, Service Science and Data Mining (NISS2012), October 23-25, 2012, Taipei Taiwan China. New York: IEEE, 2012: 790-795.
|
[13] |
PASSOS H, TEODORO F G S, DURU B M, et al. Symbolic Representations of Time Series Applied to Biometric Recognition Based on ECG Signals [C]//IEEE. 2017 International Joint Conference on Neural Networks (IJCNN), May 14, 2017, Anchorage Alaska USA. New York: IEEE, 2017: 3199-3207.
|
[14] |
QI Qi, SHEN Runye, WANG Jingyu. GAD: Topology-aware Time Series Anomaly Detection[J]. Journal on Communications, 2020,41(6):152-160.
|
|
戚琦, 申润业, 王敬宇. GAD:基于拓扑感知的时间序列异常检测[J]. 通信学报, 2020,41(6):152-160.
|
[15] |
TANG Hewei, ZHANG Shang, ZHANG Feifei, et al. Time Series Data Analysis for Automatic Flow Influx Detection During Drilling[J]. Journal of Petroleum Science and Engineering, 2019,172(4):1103-1111.
doi: 10.1016/j.petrol.2018.09.018
URL
|
[16] |
PHAM V, NGUYEN N, LI J, et al. Mtsad: Multivariate Time Series Abnormality Detection and Visualization [C]//IEEE. 2019 IEEE International Conference on Big Data, December 9-12, 2019, Los Angeles, CA, USA. New York: IEEE, 2019: 3267-3276.
|
[17] |
LIPPONEN J A, TARVAINEN M P. A Robust Algorithm for Heart Rate Variability Time Series Artefact Correction Using Novel Beat Classification[J]. Journal of Medical Engineering & Technology, 2019,43(3):173-181.
doi: 10.1080/03091902.2019.1640306
URL
pmid: 31314618
|
[18] |
LI Dan, CHEN Dacheng, JIN Baihong, et al. MAD-GAN: Multivariate Anomaly Detection for Time Series Data With Generative Adversarial Networks [C]//Springer. International Conference on Artificial Neural Networks, September 17-19, 2019, Munich, Germany. Berlin: Springer, 2019: 703-716.
|
[19] |
SU Ya, ZHAO Youjian, NIU Chenhao, et al. Robust Anomaly Detection for Multivariate Time Series Through Stochastic Recurrent Neural Network [C]//ACM. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, August 4-8, 2019, Anchorage AK USA. New York: ACM, 2019: 2828-2837.
|
[20] |
PALPANAS T, BECKMANN V. Report on The First and Second Interdisciplinary Time Series Analysis Workshop (Itisa)[J]. ACM SIGMOD Record, 2019,48(3):36-40.
|