Netinfo Security ›› 2024, Vol. 24 ›› Issue (8): 1196-1209.doi: 10.3969/j.issn.1671-1122.2024.08.006
Previous Articles Next Articles
GUO Qian1, ZHAO Jin2, GUO Yi1()
Received:
2024-01-28
Online:
2024-08-10
Published:
2024-08-22
CLC Number:
GUO Qian, ZHAO Jin, GUO Yi. Hierarchical Clustering Federated Learning Framework for Personalized Privacy-Preserving[J]. Netinfo Security, 2024, 24(8): 1196-1209.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.08.006
模型 | 数据集 | non-IID | IID | |||
---|---|---|---|---|---|---|
— | ||||||
FedAVG | MNIST | 79.46 % | 83.17 % | 88.51 % | 91.25 % | 95.67 % |
CIFAR-10 | 49.07 % | 56.48 % | 59.32 % | 64.80 % | 75.09 % | |
Fashion-MNIST | 59.40 % | 65.47 % | 68.14 % | 70.39 % | 72.67 % | |
PPeFL | MNIST | 80.28 % | 85.32 % | 89.13 % | 83.24 % | 96.28 % |
CIFAR-10 | 53.19 % | 60.59 % | 65.47 % | 73.42 % | 85.67 % | |
Fashion-MNIST | 60.53 % | 68.37 % | 73.28 % | 80.19 % | 83.14 % | |
本文模型 | MNIST | 95.31 % | 97.03 % | 96.93 % | 97.56 % | 97.83 % |
CIFAR-10 | 67.04 % | 75.64 % | 79.21 % | 82.45 % | 89.24 % | |
Fashion-MNIST | 64.37 % | 73.54 % | 76.43 % | 82.54 % | 87.14 % |
模型 | 数据集 | 学习率/轮 | 通信次数/次 |
---|---|---|---|
中位数 | MNIST | 0.035/2 | 200 |
CIFAR-10 | 0.035/2 | 1000 | |
Fashion-MNIST | 0.035/2 | 1000 | |
裁剪均值 | MNIST | 0.035/2 | 200 |
CIFAR-10 | 0.035/2 | 1000 | |
Fashion-MNIST | 0.035/2 | 1000 | |
聚类 | MNIST | 0.035/2 | 200 |
CIFAR-10 | 0.035/2 | 1000 | |
Fashion-MNIST | 0.035/2 | 1000 | |
本文模型 | MNIST | 0.035/2 | 200 |
CIFAR-10 | 0.035/2 | 1000 | |
Fashion-MNIST | 0.035/2 | 1000 | |
模型 | 准确率(定向攻击) | ||
中位数 | 84.37 % | 79.21 % | 58.78 % |
53.26 % | 43.16 % | 23.76 % | |
64.18 % | 57.29 % | 35.23 % | |
裁剪均值 | 89.03 % | 82.35 % | 61.34 % |
54.32 % | 46.13 % | 27.96 % | |
65.83 % | 60.29 % | 37.14 % | |
聚类 | 88.46 % | 85.57 % | 64.17 % |
56.73 % | 52.13 % | 29.01 % | |
66.18 % | 63.24 % | 41.47 % | |
本文模型 | 94.38 % | 92.74 % | 91.13 % |
85.15 % | 81.98 % | 74.58 % | |
87.84 % | 82.13 % | 75.28 % | |
模型 | 准确率(非定向攻击) | ||
中位数 | 81.49 % | 65.34 % | 50.13 % |
56.07 % | 51.79 % | 27.39 % | |
60.38 % | 56.71 % | 37.10 % | |
裁剪均值 | 84.37 % | 67.47 % | 50.07 % |
57.42 % | 54.72 % | 32.15 % | |
62.57 % | 58.23 % | 40.17 % | |
聚类 | 87.04 % | 83.09 % | 68.51 % |
58.36 % | 55.48 % | 49.17 % | |
64.37 % | 60.29 % | 50.38 % | |
本文模型 | 95.78 % | 93.27 % | 89.16 % |
84.45 % | 75.49 % | 71.24 % | |
85.17 % | 76.23 % | 73.85 % |
[1] | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// JMLR. 20th International Conference on Artificial Intelligence and Statistics. Burlington: JMLR, 2017: 1273-1282. |
[2] | GEIPING J, BAUERMEISTER H, DRÖGE H, et al. Inverting Gradients-How Easy is It to Break Privacy in Federated Learning?[C]// MIT. The 34th Neural Information Processing Systems. Cambridge: MIT, 2020: 16937-16947. |
[3] | YIN Hongxu, MALLYA A, VAHDAT A, et al. See through Gradients: Image Batch Recovery via GradInversion[C]// IEEE. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2021: 16332-16341. |
[4] | BOENISCH F, DZIEDZIC A, SCHUSTER R, et al. When the Curious Abandon Honesty: Federated Learning is Not Private[C]// IEEE. 2023 IEEE 8th European Symposium on Security and Privacy(EuroS&P). New York: IEEE, 2023: 175-199. |
[5] | DWORK C, ROTH A. The Algorithmic Foundations of Differential Privacy[J]. Foundations and Trends in Theoretical Computer Science, 2013, 9(3-4): 211-407. |
[6] | TRAN V T, PHAM H H, WONG K S. Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning[J]. IEEE Transactions on Emerging Topics in Computing, 2024(99): 1-12. |
[7] | WANG Baocang, CHEN Yange, JIANG Hang, et al. PPeFL: Privacy-Preserving Edge Federated Learning with Local Differential Privacy[J]. IEEE Internet of Things Journal, 2023, 10(17): 15488-15500. |
[8] | TUOR T, WANG Shiqiang, KO B J, et al. Overcoming Noisy and Irrelevant Data in Federated Learning[C]// IEEE. 2020 25th International Conference on Pattern Recognition(ICPR). New York: IEEE, 2021: 5020-5027. |
[9] | SATTLER F, MULLER K R, SAMEK W. Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization under Privacy Constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3710-3722. |
[10] | CHEN Xiao, YU Haining, JIA Xiaohua, et al. APFed: Anti-Poisoning Attacks in Privacy-Preserving Heterogeneous Federated Learning[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5749-5761. |
[11] | DINH C T, TRAN N, NGUYEN J. Personalized Federated Learning with Moreau Envelopes[C]// MIT. 34th Neural Information Processing Systems(NeurIPS). Cambridge: MIT, 2020: 21394-21405. |
[12] | PILLUTLA K, MALIK K, MOHAMED A, et al. Federated Learning with Partial Model Personalization[C]// ACM. 39th International Conference on Machine Learning(ICML). New York: ACM, 2022: 17716-17758. |
[13] | LIU Wei, TANG Congke, MA Jie et al. A Federated Learning Model for Privacy Protection Based on Blockchain and Dynamic Evaluation[J]. Journal of Computer Research and Development, 2023, 60(11): 2583-2593. |
刘炜, 唐琮轲, 马杰, 等. 基于区块链和动态评估的隐私保护联邦学习模型[J]. 计算机研究与发展, 2023, 60(11): 2583-2593. | |
[14] | LIN Tao, KONG Lingjing, STICH S U, et al. Ensemble Distillation for Robust Model Fusion in Federated Learning[C]// MIT. 34th Neural Information Processing Systems(NeurIPS). Cambridge: MIT, 2020: 2351-2363. |
[15] | MA Zhuoran, MA Jianfeng, MIAO Yubin, et al. ShieldFL: Mitigating Model Poisoning Attacks in Privacy-Preserving Federated Learning[J]. IEEE Transactions on Information Forensics and Security, 2022, 17(1): 1639-1654. |
[16] | BAGDASARYAN E, VEIT A, HUA Yiqing, et al. How to Backdoor Federated Learning[C]// JMLR. 23th International Conference on Artificial Intelligence and Statistics. Burlington: JMLR, 2020: 2938-2948. |
[17] | CAO Xiaoyu, JIA Jinyuan, GONG Zhenqiang. Provably Secure Federated Learning against Malicious Clients[C]// AAAI. 35th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 35(8): 6885-6893. |
[18] | TOLPGIN V, TRUEX S, GURSOY M E, et al. Data Poisoning Attacks against Federated Learning Systems[C]// Springer. 25th European Symposium on Research in Computer Security. Heidelberg: Springer, 2020: 480-501. |
[19] | CAO Xiaoyu, FANG Minghong, LIU Jia, et al. FLTrust: Byzantine-Robust Federated Learning via Trust Bootstrapping[C]// ISOC. 28th Annual Network and Distributed System Security Symposium. Reston: ISOC, 2021: 1-18. |
[20] | CHEN Xiao, YU Haining, JIA Xiaohua, et al. APFed: Anti-Poisoning Attacks in Privacy-Preserving Heterogeneous Federated Learning[J]. IEEE Transactions on Information Forensics and Security, 2023, 18(1): 5749-5761. |
[21] | HUANG Li, CUI Weiwei, ZHU Bin, et al. Visually Analysing the Fairness of Clustered Federated Learning with Non-IID Data[C]// IEEE. 2023 International Joint Conference on Neural Networks. New York: IEEE, 2023: 1-10. |
[22] | CATALANO D, FIORE D. Using Linearly-Homomorphic Encryption to Evaluate Degree-2 Functions on Encrypted Data[C]// ACM. The 22nd ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2015: 1518-1529. |
[23] | DENG Li. The Mnist Database of Handwritten Digit Images for Machine Learning Research[J]. IEEE Signal Processing Magazine, 2012, 29(6): 141-142. |
[24] | KRIZHEVSKY A, HINTON G. Convolutional Deep Belief Networks on Cifar-10[J]. Unpublished Manuscript, 2010, 40(7): 1-9. |
[25] | XIAO Han, RASUAL K, VOLLGRAF R. Fashion-Mnist: A Novel Image Dataset for Benchmarking Machine Learning Algorithms[EB/OL]. (2017-08-25)[2023-12-15]. https://doi.org/10.48550/arXiv.1708.07747. |
[26] | CHEN Yudong, SU Lili, XU Jiaming. Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent[C]// ACM. 2018 ACM International Conference on Measurement and Modeling of Computer Systems. New York: ACM, 2017: 1-25. |
[27] | YIN Dong, CHEN Yudong, RAMCHANDRAN K et al. Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[C]// ACM. 35th International Conference on Machine Learning. New York: ACM, 2018: 5650-5659. |
[28] | BLANCHARD P, MHAMDI E M, GUERRAOUI R, et al. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[C]// MIT. 30th Annual Conference on Neural Information Processing Systems. Cambridge: MIT, 2017: 119-129. |
[29] | SATTLER F, MÜLLER K R, WIEGAND T, et al. On the Byzantine Robustness of Clustered Federated Learning[C]// IEEE. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE, 2020: 8861-8865. |
[30] | PAILLIER P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[C]// Springer. 1999 International Conference on the Theory and Application of Cryptographic Techniques. Heidelberg: Springer, 1999: 223-238. |
[31] | WONG T T. Generalized Dirichlet Distribution in Bayesian Analysis[J]. Applied Mathematics and Computation, 1998, 97(2-3): 165-181. |
[1] | LI Zengpeng, WANG Siyang, WANG Mei. Research of Privacy-Preserving Proximity Test [J]. Netinfo Security, 2024, 24(6): 817-830. |
[2] | XUE Mingzhu, HU Liang, WANG Ming, WANG Feng. TAP Rule Processing System Based on Federated Learning and Blockchain Technology [J]. Netinfo Security, 2024, 24(3): 473-485. |
[3] | LIN Yihang, ZHOU Pengyuan, WU Zhiqian, LIAO Yong. Federated Learning Backdoor Defense Method Based on Trigger Inversion [J]. Netinfo Security, 2024, 24(2): 262-271. |
[4] | JIN Zhigang, DING Yu, WU Xiaodong. Federated Intrusion Detection Algorithm with Bilateral Correction Merging Gradient Difference [J]. Netinfo Security, 2024, 24(2): 293-302. |
[5] | WU Haotian, LI Yifan, CUI Hongyan, DONG Lin. Federated Learning Incentive Scheme Based on Zero-Knowledge Proofs and Blockchain [J]. Netinfo Security, 2024, 24(1): 1-13. |
[6] | SONG Yuhan, ZHU Yuefei, WEI Fushan. An Anomaly Detection Scheme for Blockchain Transactions Based on AdaBoost Model [J]. Netinfo Security, 2024, 24(1): 24-35. |
[7] | ZHAO Jia, YANG Bokai, RAO Xinyu, GUO Yating. Design and Implementation of Tor Traffic Detection Algorithm Based on Federated Learning [J]. Netinfo Security, 2024, 24(1): 60-68. |
[8] | XU Ruzhi, DAI Lipeng, XIA Diya, YANG Xin. Research on Centralized Differential Privacy Algorithm for Federated Learning [J]. Netinfo Security, 2024, 24(1): 69-79. |
[9] | LAI Chengzhe, ZHAO Yining, ZHENG Dong. A Privacy Preserving and Verifiable Federated Learning Scheme Based on Homomorphic Encryption [J]. Netinfo Security, 2024, 24(1): 93-105. |
[10] | PENG Hanzhong, ZHANG Zhujun, YAN Liyue, HU Chenglin. Research on Intrusion Detection Mechanism Optimization Based on Federated Learning Aggregation Algorithm under Consortium Chain [J]. Netinfo Security, 2023, 23(8): 76-85. |
[11] | CHEN Jing, PENG Changgen, TAN Weijie, XU Dequan. A Multi-Server Federation Learning Scheme Based on Differential Privacy and Secret Sharing [J]. Netinfo Security, 2023, 23(7): 98-110. |
[12] | LI Zengpeng, WANG Mei, CHEN Mengjia. Research of New Forms of Pseudorandom Random Function [J]. Netinfo Security, 2023, 23(5): 11-21. |
[13] | DU Weidong, LI Min, HAN Yiliang, WANG Xu’an. An Efficient Versatile Homomorphic Encryption Framework Based on Ciphertext Conversion Technique [J]. Netinfo Security, 2023, 23(4): 51-60. |
[14] | LIU Changjie, SHI Runhua. A Smart Grid Intrusion Detection Model for Secure and Efficient Federated Learning [J]. Netinfo Security, 2023, 23(4): 90-101. |
[15] | LI Xiaohua, WANG Suhang, LI Kai, XU Jian. A Privacy-Preserving Analysis Model of Human-to-Human Transmission of Infectious Diseases [J]. Netinfo Security, 2023, 23(3): 35-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||