Netinfo Security ›› 2024, Vol. 24 ›› Issue (11): 1731-1738.doi: 10.3969/j.issn.1671-1122.2024.11.012
Previous Articles Next Articles
GU Haiyan1(), LIU Qi2, MA Zhuo1, ZHU Tao1, QIAN Hanwei1
Received:
2024-07-05
Online:
2024-11-10
Published:
2024-11-21
CLC Number:
GU Haiyan, LIU Qi, MA Zhuo, ZHU Tao, QIAN Hanwei. Research on Data Noise Addition Method Based on Availability[J]. Netinfo Security, 2024, 24(11): 1731-1738.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.11.012
添加高斯噪声的比例η | 平均绝对误差 | 均方根误差 | 方差增长率 |
---|---|---|---|
0 | 0.121 | 0.172 | 3.06% |
5% | 0.122 | 0.167 | 3.01% |
10% | 0.120 | 0.165 | 2.69% |
15% | 0.119 | 0.164 | 2.52% |
20% | 0.118 | 0.162 | 3.04% |
25% | 0.118 | 0.162 | 4.48% |
30% | 0.115 | 0.159 | 5.94% |
35% | 0.115 | 0.157 | 5.41% |
40% | 0.116 | 0.158 | 5.70% |
45% | 0.112 | 0.152 | 2.19% |
50% | 0.113 | 0.153 | 2.80% |
55% | 0.108 | 0.149 | 4.07% |
60% | 0.106 | 0.146 | 3.13% |
65% | 0.100 | 0.136 | 1.97% |
70% | 0.097 | 0.132 | 1.54% |
75% | 0.099 | 0.134 | 1.83% |
80% | 0.096 | 0.125 | 0.47% |
85% | 0.100 | 0.128 | 0.59% |
90% | 0.100 | 0.127 | 0.91% |
95% | 0.096 | 0.120 | 1.60% |
100% | 0.090 | 0.117 | 0.96% |
高斯噪声比例 | 100个数据 | 500个数据 | ||||
---|---|---|---|---|---|---|
平均绝对误差 | 均方根 误差 | 方差 增长率 | 平均绝对误差 | 均方根 误差 | 方差 增长率 | |
0 | 0.121 | 0.172 | 3.06% | 0.112 | 0.112 | 1.41% |
20% | 0.118 | 0.162 | 3.04% | 0.110 | 0.109 | 0.28% |
40% | 0.116 | 0.158 | 5.70% | 0.107 | 0.104 | 0.29% |
60% | 0.106 | 0.146 | 3.13% | 0.102 | 0.093 | 0.52% |
80% | 0.096 | 0.125 | 0.47% | 0.101 | 0.090 | 0.80% |
100% | 0.090 | 0.117 | 0.96% | 0.097 | 0.084 | 0.51% |
高斯噪声比例 | 1000个数据 | 2000个数据 | ||||
平均绝对误差 | 均方根 误差 | 方差 增长率 | 平均绝对误差 | 均方根误差 | 方差 增长率 | |
0 | 0.113 | 0.160 | 1.86% | 0.123 | 0.176 | 3.48% |
20% | 0.112 | 0.156 | 2.18% | 0.118 | 0.167 | 2.52% |
40% | 0.106 | 0.143 | 0.89% | 0.112 | 0.157 | 2.27% |
60% | 0.105 | 0.141 | 0.41% | 0.107 | 0.145 | 2.25% |
80% | 0.101 | 0.129 | 0.04% | 0.101 | 0.133 | 1.48% |
100% | 0.098 | 0.123 | 0.03% | 0.097 | 0.126 | 1.35% |
[1] | SHAO Guosong. Psycho-Graphic Profiling: What Can Be Learned from Cambridge Analytica[J]. Media Observer, 2021, 455(11): 45-49. |
邵国松. 心理绘图与用户画像:剑桥分析的兴亡启示录[J]. 传媒观察, 2021, 455(11): 45-49. | |
[2] | QIAN Wenjun, SHEN Qingni, WU Pengfei, et al. Research Progress on Privacy-Preserving Techniques in Big Data Computing Environment[J]. Chinese Journal of Computers, 2022, 45(4): 669-701. |
钱文君, 沈晴霓, 吴鹏飞, 等. 大数据计算环境下的隐私保护技术研究进展[J]. 计算机学报, 2022, 45(4): 669-701. | |
[3] |
LI Hongtao, REN Xiaoyu, WANG Jie, et al. Continuous Location Privacy Protection Mechanism Based on Differential Privacy[J]. Journal on Communications, 2021, 42(8): 164-175.
doi: 10.11959/j.issn.1000-436x.2021123 |
李洪涛, 任晓宇, 王洁, 等. 基于差分隐私的连续位置隐私保护机制[J]. 通信学报, 2021, 42(8): 164-175.
doi: 10.11959/j.issn.1000-436x.2021123 |
|
[4] | DWORK C. Differential Privacy[C]// Springer. International Colloquium on Automata, Languages, and Programming. Heidelberg: Springer, 2006: 1-12. |
[5] |
ZHANG Xuejun, YANG Haoying, LI Zhen, et al. Differentially Private Location Privacy-Preserving Scheme with Semantic Location[J]. Computer Science, 2021, 48(8): 300-308.
doi: 10.11896/jsjkx.200900198 |
张学军, 杨昊英, 李桢, 等. 融合语义位置的差分私有位置隐私保护方法[J]. 计算机科学, 2021, 48(8): 300-308.
doi: 10.11896/jsjkx.200900198 |
|
[6] |
HUANG Haiping, WANG Kai, TANG Xiong, et al. Differential Privacy Protection Scheme Based on Edge Betweenness Model[J]. Journal on Communications, 2019, 40(5): 88-97.
doi: 10.11959/j.issn.1000-436x.2019095 |
黄海平, 王凯, 汤雄, 等. 基于边介数模型的差分隐私保护方案[J]. 通信学报, 2019, 40(5): 88-97.
doi: 10.11959/j.issn.1000-436x.2019095 |
|
[7] |
WANG Li’e, LI Xiaocong, LIU Hongyi. News Recommendation Method with Knowledge Graph and Differential Privacy[J]. Journal of Computer Applications, 2022, 42(5): 1339-1346.
doi: 10.11772/j.issn.1001-9081.2021030527 |
王利娥, 李小聪, 刘红翼. 融合知识图谱和差分隐私的新闻推荐方法[J]. 计算机应用, 2022, 42(5): 1339-1346.
doi: 10.11772/j.issn.1001-9081.2021030527 |
|
[8] | LIU Kai, HAN Yiliang, GUO Kaiyang, et al. Differential Privacy Trajectory Protection Mechanism Based on DBSCAN Clustering Algorithm[J]. Science Technology and Engineering, 2022, 22(25): 11091-11096. |
刘凯, 韩益亮, 郭凯阳, 等. 基于密度的噪声应用空间聚类算法的差分隐私轨迹保护机制[J]. 科学技术与工程, 2022, 22(25): 11091-11096. | |
[9] | WEI Kang, LI Jun, DING Ming, et al. Federated Learning with Differential Privacy: Algorithms and Performance Analysis[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3454-3469. |
[10] | SONG Cheng, CHENG Daochen, NI Shuiping. k Anonymous Trajectory Privacy Protection Scheme of Personalized Differential Privacy[J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(3): 109-114. |
宋成, 程道晨, 倪水平. 个性化差分隐私的k匿名轨迹隐私保护方案[J]. 北京邮电大学学报, 2023, 46(3): 109-114. | |
[11] |
LI Kejia, HU Xuexian, CHEN Yue, et al. Differential Privacy Linear Regression Algorithm Based on Principal Component Analysis and Functional Mechanism[J]. Computer Science, 2023, 50(8): 342-351.
doi: 10.11896/jsjkx.220800255 |
李可佳, 胡学先, 陈越, 等. 基于主成分分析和函数机制的差分隐私线性回归算法[J]. 计算机科学, 2023, 50(8): 342-351.
doi: 10.11896/jsjkx.220800255 |
|
[12] | XU Yahong, YANG Geng, BAI Yunlu, et al. Differential Privacy Data Publish Algorithm for Principal Component Analysis[J]. Cyberspace Security, 2018, 9(10): 74-82. |
徐亚红, 杨庚, 白云璐, 等. 面向主成分分析的差分隐私数据发布算法[J]. 网络空间安全, 2018, 9(10): 74-82. | |
[13] | YANG Jun, ZHOU Juling. Restore of Mathematical Detail: The Process of Gauss Deriving the Probability Density Function of Normal Distribution[J]. Journal of Statistics and Information, 2019, 34(6): 17-21. |
杨军, 周菊玲. 还原数学细节:高斯推导正态分布概率密度函数的过程[J]. 统计与信息论坛, 2019, 34(6): 17-21. | |
[14] | ROY I, SETTY S T V, KILZER A, et al. Airavat:Security and Privacy for MapReduce[C]// USENIX. Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX, 2010: 297-312. |
[15] | BAO Ting, XU Lei, ZHU Liehuang, et al. Optimized Setting of Privacy Budget in a Recommendation System with Local Differential Privacy[J]. Scientia Sinica (Informationis), 2022, 52(8): 1481-1499. |
暴婷, 徐蕾, 祝烈煌, 等. 满足本地化差分隐私的推荐系统中隐私预算的优化设置[J]. 中国科学:信息科学, 2022, 52(8): 1481-1499. | |
[16] | YAN Yan, ZHANG Xiong, FENG Tao. Proportional Differential Privacy Budget Allocation Method for Partition and Publishing of Statistical Big Data[J]. Netinfo Security, 2022, 22(11): 24-35. |
晏燕, 张雄, 冯涛. 大数据统计划分发布的等比差分隐私预算分配方法[J]. 信息网络安全, 2022, 22(11): 24-35. | |
[17] |
ZHANG Xing, ZHANG Xing, WANG Qingyang. DP-IMKP: Data Publishing Protection Method for Personalized Differential Privacy[J]. Computer Engineering and Applications, 2023, 59(10): 288-298.
doi: 10.3778/j.issn.1002-8331.2201-0457 |
张星, 张兴, 王晴阳. DP-IMKP:满足个性化差分隐私的数据发布保护方法[J]. 计算机工程与应用, 2023, 59(10): 288-298.
doi: 10.3778/j.issn.1002-8331.2201-0457 |
|
[18] | WANG Chao. Personalized Recommendation Techniques and Applications Based on User Decision-Making Behaviors[D]. Hefei: University of Science and Technology of China, 2022. |
王超. 基于用户决策行为的个性化推荐方法及应用研究[D]. 合肥: 中国科学技术大学, 2022. | |
[19] | DWORK C, ROTH A. The Algorithmic Foundations of Differential Privacy[J]. Foundations and Trends in Theoretical Computer Science, 2013(9): 211-407. |
[1] | WEN Jinming, LIU Qing, CHEN Jie, WU Yongdong. Research Current Status and Challenges of Fully Homomorphic Cryptography Based on Learning with Errors [J]. Netinfo Security, 2024, 24(9): 1328-1351. |
[2] | LIN Zhanhang, XIANG Guangli, LI Zhenpeng, XU Ziyi. Privacy Protection Scheme of Feedforward Neural Network Based on Homomorphic Encryption [J]. Netinfo Security, 2024, 24(9): 1375-1385. |
[3] | FU Yanming, LU Shenglin, CHEN Jiayuan, QIN Hua. Dynamic Task Allocation for Crowd Sensing Based on Deep Reinforcement Learning and Privacy Protection [J]. Netinfo Security, 2024, 24(3): 449-461. |
[4] | SONG Yuhan, ZHU Yuefei, WEI Fushan. An Anomaly Detection Scheme for Blockchain Transactions Based on AdaBoost Model [J]. Netinfo Security, 2024, 24(1): 24-35. |
[5] | XU Ke, LI Jiayi, JIANG Xinghao, SUN Tanfeng. A Video Gait Privacy Protection Algorithm Based on Sparse Adversarial Attack on Silhouette [J]. Netinfo Security, 2024, 24(1): 48-59. |
[6] | XU Ruzhi, DAI Lipeng, XIA Diya, YANG Xin. Research on Centralized Differential Privacy Algorithm for Federated Learning [J]. Netinfo Security, 2024, 24(1): 69-79. |
[7] | YU Huifang, QIAO Yifan, MENG Ru. Attribute-Based Anti-Quantum Threshold Ring Signcryption Scheme for Blockchain-Based Finance [J]. Netinfo Security, 2023, 23(7): 44-52. |
[8] | TANG Yu, ZHANG Chi. A Privacy Protection Scheme for Information-Centric Networking Based on Intel SGX [J]. Netinfo Security, 2023, 23(6): 55-65. |
[9] | DU Weidong, LI Min, HAN Yiliang, WANG Xu’an. An Efficient Versatile Homomorphic Encryption Framework Based on Ciphertext Conversion Technique [J]. Netinfo Security, 2023, 23(4): 51-60. |
[10] | YIN Shu, CHEN Xingshu, ZHU Yi, ZENG Xuemei. Anonymous Domain Name Algorithm Based on Character Space Construction [J]. Netinfo Security, 2023, 23(4): 80-89. |
[11] | GUO Rui, WEI Xin, CHEN Li. An Outsourceable and Policy-Hidden Attribute-Based Encryption Scheme in the IIoT System [J]. Netinfo Security, 2023, 23(3): 1-12. |
[12] | ZHANG Xuewang, ZHANG Hao, YAO Yaning, FU Jiali. Privacy Protection Scheme of Consortium Blockchain Based on Group Signature and Homomorphic Encryption [J]. Netinfo Security, 2023, 23(3): 56-61. |
[13] | LI Jiahui, QIN Sujuan, GAO Fei, SUN Dongxu. Controllable and Supervised Privacy Protection Scheme for Blockchain Organization Transaction Based on Attribute Encryption [J]. Netinfo Security, 2023, 23(12): 103-112. |
[14] | YU Jing, YUAN Shuguang, YUAN Yulin, CHEN Chi. A Robust Watermarking Technology Based on k-Anonymity Dataset [J]. Netinfo Security, 2022, 22(9): 11-20. |
[15] | ZHANG Xuewang, LIU Yufan. Identity Traceable Anonymous Authentication Scheme for Nodes in the Perception Layer of IoT [J]. Netinfo Security, 2022, 22(9): 55-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||