Netinfo Security ›› 2023, Vol. 23 ›› Issue (12): 29-37.doi: 10.3969/j.issn.1671-1122.2023.12.004
Previous Articles Next Articles
LIU Jun1, WU Zhichao2, WU Jian1, TAN Zhenhua1,2()
Received:
2023-09-16
Online:
2023-12-10
Published:
2023-12-13
CLC Number:
LIU Jun, WU Zhichao, WU Jian, TAN Zhenhua. A Malicious Code Recognition Model Fusing Image Spatial Feature Attention Mechanism[J]. Netinfo Security, 2023, 23(12): 29-37.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.12.004
软件类型 | 样本数/个 | 软件类型 | 样本数/个 |
---|---|---|---|
Allaple.L | 1591 | Alueron.gen!J | 198 |
Allaple.A | 2949 | Malex.gen!J | 136 |
Yuner.A | 800 | Lolyda.AT | 159 |
Lolyda.AA 1 | 213 | Adialer.C | 125 |
Lolyda.AA 2 | 184 | Wintrim.BX | 97 |
Lolyda.AA 3 | 123 | Dialplatform.B | 177 |
C2Lop.P | 146 | Dontovo.A | 162 |
C2Lop.gen!G | 200 | Obfuscator.AD | 142 |
Instantaccess | 431 | Agent.FYI | 116 |
Swizzor.gen!I | 132 | Autorun.K | 106 |
Swizzor.gen!E | 128 | Rbot!gen | 158 |
VB.AT | 408 | Skintrim.N | 80 |
Fakerean | 381 |
模块 | 网络层名 | 层参数 |
---|---|---|
Baseline Block | Input | size=(32,32,1) |
C1层 | kernel=(3,3,3,128), stride=1, relu | |
P1, P2层 | padding=(2,2) | |
Maxpool | kernel=2 | |
C2层 | kernel=(3,3,128,64), stride=1, relu | |
FA-SA Block | C1层 | kernel=(7,7,2,1), stride=1, sigmod |
P1层 | padding=(3,3) | |
FA-SeA Block1 | C(Q) | kernel=(1,1,128,16), stride=1 |
C(K) | kernel=(1,1,128,16), stride=1 | |
C(V) | kernel=(1,1,128,128), stride=1 | |
FA-SeA Block2 | C(Q) | kernel=(1,1,64,8), stride=1 |
C(K) | kernel=(1,1,64,8), stride=1 | |
C(V) | kernel=(1,1,64,64), stride=1 | |
FC1, FC2, FC3 | Input | 5184 |
Output | 25 |
指标 样本标签 | Recall | Precision | F1 |
---|---|---|---|
Allaple.L | 98.7% | 98.4% | 98.5% |
Allaple.A | 98.8% | 99.0% | 98.9% |
Yuner.A | 100% | 87.9% | 93.6% |
Lolyda.AA1 | 100% | 93.5% | 96.6% |
Lolyda.AA2 | 91.9% | 100% | 95.8% |
Lolyda.AA3 | 100% | 100% | 100% |
C2LOP.P | 63.3% | 86.4% | 73.1% |
C2LOP.gen!g | 92.5% | 82.2% | 87.0% |
Instantaccess | 100% | 100% | 100% |
Swizzor.gen!E | 70.4% | 90.5% | 79.2% |
VB.AT | 94.4% | 65.4% | 77.3% |
Fakerean | 100% | 98.8% | 99.4% |
Alueron.gen!J | 100% | 100% | 100% |
Malex.gen!J | 100% | 100% | 100% |
Lolyda.AT | 100% | 100% | 100% |
Adialer.C | 100% | 100% | 100% |
Wintrim.BX | 100% | 100% | 100% |
Dialplatform.B | 95.0% | 100% | 97.4% |
Dontovo.A | 100% | 100% | 100% |
Obfuscator.AD | 100% | 100% | 100% |
Agent.FYI | 100% | 100% | 100% |
Autorun.K | 0 | 0 | — |
Rbot!gen | 100% | 100% | 100% |
Skintrim.N | 100% | 100% | 100% |
[1] |
SOURI A, HOSSENINI R. A State-of-the-Art Survey of Malware Detection Approaches Using Data Mining Techniques[J]. Human-Centric Computing and Information Sciences, 2018, 8(1): 1-22.
doi: 10.1186/s13673-017-0124-3 |
[2] | YE Yanfang, LI Tao, ADJEROH D, et al. A Survey on Malware Detection Using Data Mining Techniques[J]. ACM Computing Surveys (CSUR), 2017, 50(3): 1-40. |
[3] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. (2014-09-04)[2023-09-10]. https://arxiv.org/abs/1409.1556. |
[4] | HE Kaiming, ZHANG Xiangyu, REN Sun, et al. Deep Residual Learning for Image Recognition[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778. |
[5] | NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware Images: Visualization and Automatic Classification[C]// ACM. Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York: ACM, 2011: 1-7. |
[6] | DOUZE M, HERVE J, HARSIMRAT S, et al. Evaluation of GIST Descriptors for Web-Scale Image Search[C]// ACM. Proceedings of the ACM International Conference on Image and Video Retrieval. New York: ACM, 2009: 1-8. |
[7] | YAJAMANAM S, SELVIN V, TROIA F D, et al. Deep Learning Versus Gist Descriptors for Image-Based Malware Classification[C]// IEEE. Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018). New York: IEEE, 2018: 553-561. |
[8] |
HAN K S, LIM J H, KANG B, et al. Malware Analysis Using Visualized Images and Entropy Graphs[J]. International Journal of Information Security, 2015, 14(1): 1-14.
doi: 10.1007/s10207-014-0242-0 URL |
[9] | BHODIA N, PRAJAPATI P, TROIA F D, et al. Transfer Learning for Image-Based Malware Classification[EB/OL]. (2019-01-21)[2023-09-10]. http://archive.ifla.org/IV/ifla64/138-161e.htm. |
[10] | GAVRILUT D, CIMPOESU M, ANTON D, et al. Malware Detection Using Machine Learning[C]// IEEE. 2009 International Multiconference on Computer Science and Information Technology. New York: IEEE, 2009: 735-741. |
[11] | LE Q, BOYDELL O, NAMEE B M, et al. Deep Learning at the Shallow End: Malware Classification for Non-Domain Experts[J]. Digital Investigation, 2018, 26: 118-126. |
[12] |
CUI Zhihua, XUE Fei, CAI Xingjuan, et al. Detection of Malicious Code Variants Based on Deep Learning[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3187-3196.
doi: 10.1109/TII.9424 URL |
[13] | TAREEN S A K, SALEEM Z. A Comparative Analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK[C]// IEEE. 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). New York: IEEE, 2018: 1-10. |
[14] | PRAJAPATI P, STAMP M. An Empirical Analysis of Image-Based Learning Techniques for Malware Classification[J]. Malware Analysis Using Artificial Intelligence and Deep Learning, 2021: 411-435. |
[15] | AGARAP A F. Towards Building an Intelligent Anti-Malware System: A Deep Learning Approach Using Support Vector Machine (SVM) for Malware Classification[EB/OL]. (2017-12-31)[2023-09-10]. https://arxiv.org/abs/1801.00318. |
[16] | AKHIL M R, ADITHYA K V S, HARIVARRDHAN S, et al. Malware Classification Using Deep Neural Networks: Performance Evaluation and Applications in Edge Devices[EB/OL]. (2023-08-21) [2023-09-10]. https://arxiv.org/abs/2310.06841. |
[17] | SON T T, LEE C, LE-MINH H, et al. An Evaluation of Image-Based Malware Classification Using Machine Learning[C]// ICCCI. Communications in Computer and Information Science. Berlin:Springer, 2020: 125-138. |
[18] | WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C]// ECCV. 15th European Conference. Berlin:Springer, 2018: 3-19. |
[19] |
WANG Bo, CAI Honghao, SU Yang. Classification of Malicious Code Variants Based on VGGNet[J]. Journal of Computer Applications, 2020, 40(1): 162-167.
doi: 10.11772/j.issn.1001-9081.2019050953 |
王博, 蔡弘昊, 苏旸. 基于VGGNet的恶意代码变种分类[J]. 计算机应用, 2020, 40(1): 162-167.
doi: 10.11772/j.issn.1001-9081.2019050953 |
|
[20] |
JIANG Kaolin, BAI Wei, ZHANG Lei, et al. Malicious Code Detection Based on Multi-Channel Image Deep Learning[J]. Journal of Computer Applications, 2021, 41(4): 1142-1147.
doi: 10.11772/j.issn.1001-9081.2020081224 |
蒋考林, 白玮, 张磊, 等. 基于多通道图像深度学习的恶意代码检测[J]. 计算机应用, 2021, 41(4): 1142-1147.
doi: 10.11772/j.issn.1001-9081.2020081224 |
|
[21] | ZHANG Han, GOODFELLOW I, METAXAS D, et al. Self-Attention Generative Adversarial Networks[C]// PMRL. Proceedings of the 36th International Conference on Machine Learning. Long Beach: Curran Associates, 2019: 7354-7363. |
[1] | XUE Yu, ZHANG Yixuan. Survey on Deep Neural Architecture Search [J]. Netinfo Security, 2023, 23(9): 58-74. |
[2] | LIU Gang, YANG Wenli, WANG Tongli, LI Yang. Differential Privacy-Preserving Dynamic Recommendation Model Based on Cloud Federation [J]. Netinfo Security, 2023, 23(7): 31-43. |
[3] | LIU Yuxiao, CHEN Wei, ZHANG Tianyue, WU Lifa. Explainable Anomaly Traffic Detection Based on Sparse Autoencoders [J]. Netinfo Security, 2023, 23(7): 74-85. |
[4] | JIANG Yingzhao, CHEN Lei, YAN Qiao. Distributed Denial of Service Attack Detection Algorithm Based on Two-Channel Feature Fusion [J]. Netinfo Security, 2023, 23(7): 86-97. |
[5] | ZHAO Caidan, CHEN Jingqian, WU Zhiqiang. Automatic Modulation Recognition Algorithm Based on Multi-Channel Joint Learning [J]. Netinfo Security, 2023, 23(4): 20-29. |
[6] | TAN Liuyan, RUAN Shuhua, YANG Min, CHEN Xingshu. Educational Data Classification Based on Deep Learning [J]. Netinfo Security, 2023, 23(3): 96-102. |
[7] | XU Zhanyang, CHENG Luofei, CHENG Jianchun, XU Xiaolong. A Scheme of Optimizing Deep Learning Model Using Bi-ADMM [J]. Netinfo Security, 2023, 23(2): 54-63. |
[8] | CHEN Depeng, LIU Xiao, CUI Jie, ZHONG Hong. Research on Membership Inference Attack Method Based on Double Threshold Function [J]. Netinfo Security, 2023, 23(2): 64-75. |
[9] | WEN Weiping, ZHU Yifan, LYU Zihan, LIU Chengjie. Brand-Specific Phishing Expansion and Detection Solutions [J]. Netinfo Security, 2023, 23(12): 1-9. |
[10] | LIAO Liyun, ZHANG Bolei, WU Lifa. IoT Anomaly Detection Model Based on Cost-Sensitive Learning [J]. Netinfo Security, 2023, 23(11): 94-103. |
[11] | JIA Fan, KANG Shuya, JIANG Weiqiang, WANG Guangtao. Vulnerability Similarity Algorithm Evaluation Based on NLP and Feature Fusion [J]. Netinfo Security, 2023, 23(1): 18-27. |
[12] | SHEN Chuanxin, WANG Yongjie, XIONG Xinli. DNS Covert Channel Detection Based on Graph Attention Network [J]. Netinfo Security, 2023, 23(1): 73-83. |
[13] | LI Jiyu, FU Zhangjie, ZHANG Yubin. An Image Information Hiding Algorithm Based on Cross-Domain Adversarial Adaptation [J]. Netinfo Security, 2023, 23(1): 93-102. |
[14] | ZHANG Guanghua, LIU Yongsheng, WANG He, YU Naiwen. Smart Contract Vulnerability Detection Scheme Based on BiLSTM and Attention Mechanism [J]. Netinfo Security, 2022, 22(9): 46-54. |
[15] | GAO Bo, CHEN Lin, YAN Yingjian. Research on Side Channel Attack Based on CNN-MGU [J]. Netinfo Security, 2022, 22(8): 55-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||