Netinfo Security ›› 2019, Vol. 19 ›› Issue (4): 20-28.doi: 10.3969/j.issn.1671-1122.2019.04.003
Previous Articles Next Articles
Yanchen QIAO1,2(), Qingshan JIANG1, Liang GU2, Xiaoming WU3
Received:
2018-12-10
Online:
2019-04-10
Published:
2020-05-11
CLC Number:
Yanchen QIAO, Qingshan JIANG, Liang GU, Xiaoming WU. Malware Classification Method Based on Word Vector of Assembly Instruction and CNN[J]. Netinfo Security, 2019, 19(4): 20-28.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2019.04.003
[1] | AV-TEST INSTITUTE. Malware Statistics & Trends Report[EB/OL]..2018-6-15. |
[2] | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient Estimation of Word Representations in Vector Space[EB/OL].arXiv preprint arXiv:13013781, 2013-5-5. |
[3] | RONEN R, RADU M, FEUERSTEIN C, et al. Microsoft Malware Classification Challenge[EB/OL].arXiv preprint arXiv:180210135, 2018-6-15. |
[4] | SCHULTZ M G, ESKIN E, ZADOK F, et al.Data Mining Methods for Detection of New Malicious Executables[C]//IEEE. 2001 IEEE Symposium on Security and Privacy, May 14-16, 2001, Oakland, California, USA. New York: IEEE, 2001: 38-49. |
[5] | KOLTER J Z, MALOOF M A.Learning to Detect Malicious Executables in the Wild[C]//ACM. Proceedings of the 10th ACM SIGMOD International Conference on Knowledge Discovery and Data Mining, June 13-18, 2004, Paris, France. New York: ACM, 2004: 470-478. |
[6] | TIAN R, BATTEN L M, VERSTEEG S.Function Length as a Tool for Malware Classification[C]//IEEE. IEEE 3rd International Conference on Malicious and Unwanted Software, October 7-8, 2008, Alexandria, Virginia, USA. New York: IEEE, 2008: 69-76. |
[7] | SALEHI Z, GHIASI M, SAMI A.A Miner for Malware Detection Based on API Function Calls and Their Arguments[C]//IEEE. The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012), May 2-3, 2012, Shiraz, Fars, Iran. New York: IEEE, 2012: 563-568. |
[8] | DAHL G E, STOKES J W, DENG L, et al.Large-scale Malware Classification Using Random Projections and Neural Networks[C]//IEEE. Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 26-31, 2013, Vancouver, BC, Canada. New York: IEEE, 2013: 3422-3426. |
[9] | SAXE J, BERLIN K.Deep Neural Network Based Malware Detection Using two Dimensional Binary Program Features[C]//IEEE. IEEE 10th International Conference on Malicious and Unwanted Software, October 20-22, 2015, Fajardo, PR, USA. New York: IEEE, 2015: 11-20. |
[10] | NARI S, GHORBANI A A.Automated Malware Classification Based on Network Behavior[C]//IEEE. Proceedings of the 2013 International Conference on Computing, Networking and Communications (ICNC), January 28-31, 2013, San Diego, California, USA. New York: IEEE, 2013: 642-647. |
[11] | PARK Y, REEVES D S, STAMP M.Deriving Common Malware Behavior through Graph Clustering[J]. Computers & Security, 2013, 39(6): 419-430. |
[12] | PASCANU R, STOKES J W, SANOSSIAN H, et al.Malware Classification with Recurrent networks[C]//IEEE. Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apirl 19-24, 2015, South Brisbane, Queensland, Australia. New York: IEEE, 2015: 1916-1920. |
[13] | GIANNELLA C, BLOEDORN E.Spectral Malware Behavior Clustering[C]//IEEE. 2015 IEEE International Conference on Intelligence and Security Informatics (ISI), May 27-29, 2015, Baltimore, MD, USA. New York: IEEE, 2015: 7-12. |
[14] | HUANG Wenyi, STOKES J W.MtNet: A Multi-Task Neural Network for Dynamic Malware Classification[C]//Springer. Proceedings of the 13th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, July 7-8, 2016, San Sebastián, Spain. New York: Springer, 2016: 399-418. |
[15] | GAO Jin, HE Yahao, ZHANG Xiaoyan, et al.Duplicate Short Text Detection Based on Word2vec[C]//IEEE. Proceedings of 2017 IEEE 8th International Conference on Software Engineering and Service Science, November 24-26, 2017, Beijing, China. New York: IEEE, 2017: 53-57. |
[16] | ZHANG Dongwen, XU Hua, SU Zengcai, et al.Chinese Comments Sentiment Classification Based on Word2vec and SVM Perf[J].Expert Systems With Applications, 2015, 42(4): 1857-1863. |
[17] | POPOV I.Malware Detection Using Machine Learning Based on Word2vec Embeddings of Machine Code Instructions[C]//IEEE. IEEE 2017 Siberian Symposium on Data Science and Engineering (SSDSE), Apirl 12-13, 2017, Novosibirsk, Russia. New York: IEEE, 2017: 1-4. |
[18] | TRAN T K, SATO H.NLP-based Approaches for Malware Classification from API Sequences[C]//IEEE. The 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2017), November 15-17, 2017, Hanoi, Vietnam. New York: IEEE, 2017: 101-105. |
[19] | LE Q, MIKOLOV T.Distributed Representations of Sentences and Documents[C]//JMLR. The 31th International Conference on Machine Learning, June 21-26, 2014, Beijing, China. New York: JMLR, 2017: 1188-1196. |
[20] | CAKIR B, DOGDU E.Malware Classification Using Deep Learning Methods[C]//ACM. 2nd Annual Conference on Material Science and Engineering (ACMSE 2018), November 12-14, 2018, Dubai, United Arab Emirates. New York: ACM, 2018: 1-5. |
[21] | FRIEDMAN J H.Greedy Function Approximation: A Gradient Boosting Machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232. |
[22] | SHANKARAPANI M K, RAMAMOORTHY S, MOVVA R S, et al.Malware Detection Using Assembly and API Call Sequences[J].Journal in Computer Virology, 2011, 7(2): 107-119. |
[23] | FUKUSHIMA K.Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern Recognition[J]. Neural Networks, 1988, 1(2): 119-130. |
[24] | YAN Zhicheng, JAGADEESH V, DECOSTE D, et al.HD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification[C]//IEEE. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV 2015), December 7-13, 2015, Santiago, Chile. New York: IEEE, 2015: 2740-2748. |
[25] | KULKARNI P, ZEPEDA J, JURIE F, et al.Hybrid Multi-layer Deep CNN/Aggregator Feature for Image Classification[C]//IEEE. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 19-24, 2015, Brisbane, QLD, Australia. New York: IEEE, 2015: 1379-1383. |
[26] | WANG Jiang, YANG Yi, MAO Junhua, et al.CNN-RNN: A Unified Framework for Multi-label Image Classification[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 2285-2294. |
[27] | WEI Yunchao, XIA Wen, LIN Min, et al.HCP: A Flexible CNN Framework for Multi-label Image Classification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 38(9): 1901-1907. |
[28] | LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[29] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet Classification with Deep Convolutional Neural Networks[C]//Springer. Proceedings of the 19th International Conference on Neural Information Processing, November 12-15, 2012, Doha, Qatar. New York: Springer, 2012: 1097-1105. |
[30] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. arXiv preprint arXiv:1409.1556, 2014-3-15. |
[31] | SZEGEDY C, LIU W, JIA Y, et al.Going Deeper with Convolutions[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 1-9. |
[32] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al.Deep Residual Learning for Image Recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 770-778. |
[33] | LECUN Y, BOSER B, DENKER J S, et al.Backpropagation Applied to Handwritten Zip Code Recognition[J]. Neural Comput, 1989, 1(4): 541-551. |
[1] | Chun GUO, Changqing CHEN, Guowei SHEN, Chaohui JIANG. A Ransomware Classification Method Based on Visualization [J]. Netinfo Security, 2020, 20(4): 31-39. |
[2] | Liuyang HOU, Senlin LUO, Limin PAN, Ji ZHANG. Multi-feature Android Malware Detection Method [J]. Netinfo Security, 2020, 20(1): 67-74. |
[3] | SONG Xin, ZHAO Kai, ZHANG Linlin, FANG Wenbo. Research on Android Malware Detection Based on Random Forest [J]. Netinfo Security, 2019, 19(9): 1-5. |
[4] | LI Hui, NI Shice, XIAO Jia, ZHAO Tianzhong. Emotion Classification Technology for Online Video Comments on the Internet [J]. 信息网络安全, 2019, 19(5): 61-68. |
[5] | Xuruirui FENG, Jiayong LIU, Pengsen CHENG. Analyzing Malware Behavior and Capability Related Text Based on Feature Extraction [J]. Netinfo Security, 2019, 19(12): 72-78. |
[6] | Jian ZHANG, Bohan CHEN, Liangyi GONG, Zhaojun GU. Research on Malware Detection Technology Based on Image Analysis [J]. Netinfo Security, 2019, 19(10): 24-31. |
[7] | CHEN Hongsong, WANG Gang, SONG Jianlin. Research on Anomaly Behavior Classification Algorithm of Internal Network User Based on Cloud Computing Intrusion Detection Data Set [J]. 信息网络安全, 2018, 18(3): 1-7. |
[8] | LI Yunchun, LU Wentao, LI Wei. Malware Detection Method Based on Shapelet [J]. 信息网络安全, 2018, 18(3): 70-77. |
[9] | WEI Shuning, CHEN Xingru, TANG Yong, LIU Hui. Research on the Application of AR-HELM Algorithm in Network Traffic Classifi cation [J]. 信息网络安全, 2018, 18(1): 9-14. |
[10] | CHEN Xu, LI Yukun, YUAN Huaping, LIU Wenyin. Phishing Detection System Based on Classification Confidence and Website Features [J]. 信息网络安全, 2017, 17(9): 111-114. |
[11] | JIANG Zhuojian, WU Chunhua, XIA Ming. Research and Implementation on Multi-Layer User Classification Method Based on Cloud System [J]. 信息网络安全, 2017, 17(8): 69-75. |
[12] | REN Hao, LUO Senlin, PAN Limin, GAO Junfeng. Research on the Algorithm of Short Text Representation Based on Graph Structure [J]. 信息网络安全, 2017, 17(3): 46-52. |
[13] | ZHANG Tengfei, ZHANG Qian, LIU Jiayong. URL Classification Method Based on AdaBoost and Bayes Algorithm [J]. 信息网络安全, 2017, 17(3): 66-71. |
[14] | WANG Bo, WANG Huaibin. Research on Imbalanced Abnormal Data Classification Algorithm Based on Active Learning [J]. 信息网络安全, 2017, 17(10): 42-49. |
[15] | ZHANG Qian, GAO Zhangmin, LIU Jiayong. Research of Weibo Short Text Classification Based on Word2vec [J]. 信息网络安全, 2017, 17(1): 57-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||