[1] |
CHAWLA N V, BOWYER K W, HALL L O, et al.SMOTE: Synthetic Minority over-sampling Technique[J]. Journal of Artificial Intelligence Research, 2011, 16(1):321-357.
|
[2] |
LIU Yang, AN Aijun, HUANG Xiangji.Boosting Prediction Accuracy on Imbalanced Datasets with SVM Ensembles[C]//Springer. 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, April 9-12, 2006, Singapore. Heidelberg: Springer, 2006: 107-118.
|
[3] |
VEROPOULOS K, CAMPBELL C, CRISTIANINI N. Controlling the Sensitivity of Support Vector Machines[EB/OL]. https://www.researchgate.net/publication/2617438_Controlling_the_Sensitivity_of_Support_Vector_Machines, 2017-4-11.
|
[4] |
WANG B X, JAPKOWICZ N.Boosting Support Vector Machines for Imbalanced Data Sets[C]//Springer. 17th International Conference on Foundations of Intelligent Systems, May 20-23, 2008, Toronto, Canada. Heidelberg: Springer, 2008: 38-47.
|
[5] |
AKBANI R, KWEK S, JAPKOWICZ N.Applying Support Vector Machines to Imbalanced Datasets[C]//Spring. 15th European Conference on Machine Learning, September 20-24, 2004, Pisa, Italy. Heidelberg: Springer, 2004: 39-50.
|
[6] |
吴晓平,周舟,李洪成. Spark框架下基于无指导学习环境的网络流量异常检测研究与实现[J]. 信息网络安全,2016(6):1-7.
|
[7] |
KANG P, CHO S.EUS SVMs: Ensemble of Under-Sampled SVMs for Data Imbalance Problems[C]//Springer. 13th International Conference on Neural Information Processing, October 3-6, 2006, Hong Kong, China. Heidelberg: Springer, 2006: 837-846.
|
[8] |
李鹏,王晓龙,刘远超,等. 一种基于混合策略的失衡数据集分类方法[J]. 电子学报,2007,35(11):2161-2165.
|
[9] |
IMAM T, KAI M T, KAMRUZZAMAN J.Z-SVM: An SVM for Improved Classification of Imbalanced Data[C]//Springer. 19th Australian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence, December 4-8, 2006, Hobart, Australia. Heidelberg: Springer, 2006: 264-273.
|
[10] |
LÓPEZ V, FERNÁNDEZ A, GARCÍA S, et al. An Insight into Classification with Imbalanced Data: Empirical Results and Current Trends on using Data Intrinsic Characteristics[J]. Information Sciences, 2013, 250(11): 113-141.
|
[11] |
DATTA S, DAS S. Near-Bayesian Support Vector Machines for Imbalanced Data Classification with Equal or Unequal Misclassification Costs[EB/OL]. , 2017-2-22.
|
[12] |
XU Yitian, YANG Zhiji, ZHANG Yuqun, et al.A Maximum Margin and Minimum Volume Hyper-spheres Machine with Pinball Loss for Imbalanced Data Classification[J]. Knowledge-Based Systems, 2016, 95(C): 75-85.
|
[13] |
何明亮,陈泽茂,左进. 基于多窗口机制的聚类异常检测算法[J]. 信息网络安全,2016(11):33-39.
|
[14] |
任晓芳,赵德群,秦健勇. 基于随机森林和加权K均值聚类的网络入侵检测系统[J]. 微型电脑应用,2016,32(7):21-24.
|
[15] |
韩亮. 基于随机森林的行人检测算法研究[D]. 北京:北方工业大学,2014.
|
[16] |
杨连群,温晋英,刘树发,等. 一种改进的图分割算法在用户行为异常检测中的应用[J]. 信息网络安全,2016(6):35-40.
|
[17] |
丁文彬. 基于决策树分类的网络异常流检测与过滤[D]. 成都:电子科技大学,2013.
|
[18] |
赵强利,蒋艳凰. 类别严重不均衡应用的在线数据流学习算法[J]. 计算机科学,2017,44(6):255-259.
|
[19] |
胡洋瑞,陈兴蜀,王俊峰,等. 基于流量行为特征的异常流量检测[J]. 信息网络安全,2016(11):45-51.
|
[20] |
李诒靖,郭海湘,李亚楠,等. 一种基于Boosting的集成学习算法在不均衡数据中的分类[J]. 系统工程理论与实践,2016,36(1):189-199.
|