信息网络安全 ›› 2023, Vol. 23 ›› Issue (2): 64-75.doi: 10.3969/j.issn.1671-1122.2023.02.008
收稿日期:
2022-11-21
出版日期:
2023-02-10
发布日期:
2023-02-28
通讯作者:
崔杰
E-mail:cuijie@ahu.edu.cn
作者简介:
陈得鹏(1988—),男,湖北,讲师,博士,主要研究方向为人工智能安全、物联网安全和隐私保护|刘肖(1999—),男,安徽,硕士研究生,主要研究方向为人工智能安全|崔杰(1980—),男,河南,教授,博士,主要研究方向为应用密码学、物联网安全、车联网和云计算安全|仲红(1965—),女,安徽,教授,博士,主要研究方向为网络信息安全和隐私保护
基金资助:
CHEN Depeng, LIU Xiao, CUI Jie(), ZHONG Hong
Received:
2022-11-21
Online:
2023-02-10
Published:
2023-02-28
Contact:
CUI Jie
E-mail:cuijie@ahu.edu.cn
摘要:
海量数据和强大算力的出现,促进了深度学习的发展,深度学习在智慧交通和医疗诊断等领域得到广泛应用,这给人们的日常生活带来许多便利。然而,机器学习中的隐私泄露问题也不容忽视。成员推理攻击通过推断数据样本是否用于训练机器学习模型,从而暴露用户训练数据的隐私。文章介绍了基于单阈值的成员推理攻击及特点,对不同攻击方法的成员和非成员的数据分布进行可视化,然后对成员推理攻击成功的内在机理进行分析,提出了基于双阈值函数的攻击模型,并通过实验对单阈值和双阈值的成员推理攻击进行系统性的分析对比,分析基于阈值成员推理攻击对不同模型和不同数据集的攻击表现。通过对多组控制变量的对比实验表明,基于双阈值函数的成员推理攻击在某些数据集和模型上,整体表现更加优异和稳定。
中图分类号:
陈得鹏, 刘肖, 崔杰, 仲红. 一种基于双阈值函数的成员推理攻击方法[J]. 信息网络安全, 2023, 23(2): 64-75.
CHEN Depeng, LIU Xiao, CUI Jie, ZHONG Hong. Research on Membership Inference Attack Method Based on Double Threshold Function[J]. Netinfo Security, 2023, 23(2): 64-75.
表3
基于阈值MIAs攻击准确率
模型表现 | 基于阈值的成员推理攻击准确率 | ||||||
---|---|---|---|---|---|---|---|
数据集 | 模型 结构 | 训练 准确度 | 测试 准确度 | ${{A}_{\text{correct}}}$[ | ${{A}_{\text{max}}}$[ | ${{A}_{\text{entropy}}}$[ | ${{A}_{\text{double}}}$ |
CIFAR10 | CNN | 100% | 77.55% | 77.84% | 74.84% | 80.49% | 75.88% |
VGG19 | 100% | 92.69% | 73.52% | 73.64% | 74.13% | 74.30% | |
Resnet18 | 100% | 88.72% | 74.65% | 79.38% | 76.53% | 79.83% | |
CIFAR100 | CNN | 99.97% | 43.74% | 87.49% | 79.23% | 90.05% | 81.74% |
VGG19 | 99.98% | 71.46% | 79.57% | 79.74% | 80.80% | 79.73% | |
Resnet18 | 99.98% | 67.95% | 80.57% | 91.25% | 89.41% | 93.84% | |
STL10 | CNN | 100% | 58.38% | 71.24% | 63.78% | 69.22% | 68.68% |
VGG19 | 100% | 86.23% | 56.92% | 66.08% | 56.94% | 66.12% | |
Resnet18 | 100% | 77.50% | 60.84% | 70.74% | 63.38% | 70.90% | |
平均值 | — | — | — | 73.63% | 75.41% | 75.66% | 76.78% |
表4
基于阈值MIA攻击召回率
模型表现 | 基于阈值的成员推理攻击召回率 | ||||
---|---|---|---|---|---|
数据集 | 模型结构 | ${{A}_{\text{correct}}}$[ | ${{A}_{\text{max}}}$[ | ${{A}_{\text{entropy}}}$[ | ${{A}_{\text{double}}}$ |
CIFAR10 | CNN | 100% | 95.78% | 99.94% | 97.57% |
VGG19 | 100% | 98.26% | 99.96% | 98.38% | |
Resnet18 | 100% | 99.45% | 100% | 98.84% | |
CIFAR100 | CNN | 99.98% | 95.25% | 99.52% | 95.93% |
VGG19 | 99.98% | 98.21% | 99.92% | 98.44% | |
Resnet18 | 99.98% | 99.76% | 99.93% | 99.28% | |
STL10 | CNN | 100% | 82.48% | 100% | 86.68% |
VGG19 | 100% | 89.96% | 100% | 94.48% | |
Resnet18 | 100% | 93.28% | 99.96% | 92.92% |
表5
基于阈值MIA攻击精准率和F1分数
模型表现 | 基于阈值的成员推理攻击精确率和 F1分数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
数据集 | 模型 结构 | ${{A}_{\text{correct}}}$[ | ${{A}_{\max }}$[ | ${{A}_{\text{entropy}}}$[ | ${{A}_{\text{double}}}$ | ||||
精确率 | F1 分数 | 精确率 | F1 分数 | 精确率 | F1 分数 | 精确率 | F1 分数 | ||
CIFAR10 | CNN | 76.32% | 0.866 | 74.85% | 0.847 | 78.57% | 0.879 | 76.93% | 0.853 |
VGG19 | 72.95% | 0.844 | 74.17% | 0.845 | 73.70% | 0.847 | 74.11% | 0.846 | |
Resnet18 | 73.81% | 0.849 | 77.84% | 0.873 | 75.27% | 0.859 | 78.39% | 0.874 | |
CIFAR100 | CNN | 85.12% | 0.920 | 79.66% | 0.868 | 88.09% | 0.935 | 81.05% | 0.879 |
VGG19 | 77.77% | 0.874 | 78.70% | 0.874 | 78.85% | 0.881 | 78.59% | 0.874 | |
Resnet18 | 78.63% | 0.880 | 89.13% | 0.942 | 89.41% | 0.944 | 92.61% | 0.958 | |
STL10 | CNN | 63.48% | 0.777 | 60.03% | 0.695 | 61.90% | 0.765 | 63.74% | 0.738 |
VGG19 | 53.72% | 0.699 | 60.52% | 0.726 | 53.73% | 0.699 | 60.29% | 0.737 | |
Resnet18 | 56.08% | 0.719 | 64.30% | 0.761 | 57.73% | 0.732 | 64.58% | 0.762 |
[1] | SHOKRI R, STRONATI M, SONG Congzheng, et al. Membership Inference Attacks Against Machine Learning Models[C]// IEEE. Symposium on Security and Privacy. New York: IEEE, 2017: 3-18. |
[2] | SALEM A, ZHANG Yang, HUMBERT M, et al. ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models[C]// The Internet Society. Network and Distributed System Security Symposium. New York: The Internet Society, 2019: 1-15. |
[3] | LI Zheng, ZHANG Yang. Membership Leakage in Label-Only Exposures[C]// ACM. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2021: 880-895. |
[4] | YEOM S, GIACOMELLI I, FREDRIKSON M, et al. Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting[C]// IEEE. 31st Computer Security Foundations Symposium. New York: IEEE, 2018: 268-282. |
[5] | CHOO C C A, TRAMER F, CARLINI N, et al. Label-Only Membership Inference Attacks[C]// PMLR. Proceedings of the 38th International Conference on Machine Learning. New York: PMLR, 2021: 1964-1974. |
[6] | HUI Bo, YANG Yuchen, YUAN Haolin, et al. Practical Blind Membership Inference Attack via Differential Comparisons[C]// The Internet Society. Network and Distributed System Security Symposium, New York: The Internet Society, 2021: 1-17. |
[7] |
TRUEX S, LIU Ling, GURSOY M E, et al. Demystifying Membership Inference Attacks in Machine Learning as a Service[J]. IEEE Transactions on Services Computing, 2019, 14(6): 2073-2089.
doi: 10.1109/TSC.2019.2897554 URL |
[8] | CHEN Jiale, ZHANG Jiale, ZHAO Yanchao, et al. Beyond Model-Level Membership Privacy Leakage: An Adversarial Approach in Federated Learning[C]// IEEE. 29th International Conference on Computer Communications and Networks. New York: IEEE, 2020: 1-9. |
[9] | PICHLER G, ROMANELLI M, VEGA L R, et al. Perfectly Accurate Membership Inference by a Dishonest Central Server in Federated Learning[EB/OL]. (2022-03-30)[2022-10-18]. https://arxiv.org/ftp/arxiv/papers/2203/2203.16463.pdf. |
[10] | HILPRECHT B, HRTERICH M, BERNAU D. Reconstruction and Membership Inference Attacks Against Generative Models[EB/OL]. (2019-06-07)[2022-10-18]. https://arxiv.org/pdf/1906.03006.pdf. |
[11] | CHEN Dingfan, YU Ning, ZHANG Yang, et al. GAN-Leaks: A Taxonomy of Membership Inference Attacks Against Generative Models[C]// ACM. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 343-362. |
[12] | HU Hailong, PANG Jun. Membership Inference Attacks Against GANs by Leveraging Over-representation Regions[C]// ACM. Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2021: 2387-2389. |
[13] | LIU Hongbin, JIA Jinyuan, QU Wenjie, et al. EncoderMI: Membership Inference Against Pre-Trained Encoders in Contrastive Learning[C]// ACM. Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2021: 2081-2095. |
[14] | LI Jiacheng, LI Ninghui, RIBEIRO B. Membership Inference Attacks and Defenses in Classification Models[C]// ACM. The Eleventh ACM Conference on Data and Application Security and Privacy. New York: ACM, 2021: 5-16. |
[15] | LONG Yunhui, BINDSCHAEDLER V, WANG Lei, et al. Understanding Membership Inferences on Well-Generalized Learning Models[EB/OL]. (2018-02-13)[2022-10-18]. https://arxiv.org/pdf/1802.04889.pdf. |
[16] | REZAEI S, LIU Xin. On the Difficulty of Membership Inference Attacks[C]// IEEE. Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 7892-7900. |
[1] | 谭柳燕, 阮树骅, 杨敏, 陈兴蜀. 基于深度学习的教育数据分类方法[J]. 信息网络安全, 2023, 23(3): 96-102. |
[2] | 徐占洋, 程洛飞, 程建春, 许小龙. 一种使用Bi-ADMM优化深度学习模型的方案[J]. 信息网络安全, 2023, 23(2): 54-63. |
[3] | 贾凡, 康舒雅, 江为强, 王光涛. 基于NLP及特征融合的漏洞相似性算法评估[J]. 信息网络安全, 2023, 23(1): 18-27. |
[4] | 高博, 陈琳, 严迎建. 基于CNN-MGU的侧信道攻击研究[J]. 信息网络安全, 2022, 22(8): 55-63. |
[5] | 郑耀昊, 王利明, 杨婧. 基于网络结构自动搜索的对抗样本防御方法研究[J]. 信息网络安全, 2022, 22(3): 70-77. |
[6] | 郭森森, 王同力, 慕德俊. 基于生成对抗网络与自编码器的网络流量异常检测模型[J]. 信息网络安全, 2022, 22(12): 7-15. |
[7] | 张郅, 李欣, 叶乃夫, 胡凯茜. 融合多重风格迁移和对抗样本技术的验证码安全性增强方法[J]. 信息网络安全, 2022, 22(10): 129-135. |
[8] | 刘烁, 张兴兰. 基于双重注意力的入侵检测系统[J]. 信息网络安全, 2022, 22(1): 80-86. |
[9] | 朱新同, 唐云祁, 耿鹏志. 基于特征融合的篡改与深度伪造图像检测算法[J]. 信息网络安全, 2021, 21(8): 70-81. |
[10] | 路宏琳, 王利明. 面向用户的支持用户掉线的联邦学习数据隐私保护方法[J]. 信息网络安全, 2021, 21(3): 64-71. |
[11] | 马瑞, 蔡满春, 彭舒凡. 一种基于改进的Xception网络的深度伪造视频检测模型[J]. 信息网络安全, 2021, 21(12): 109-117. |
[12] | 潘孝勤, 杜彦辉. 基于混合特征和多通道GRU的伪造语音鉴别方法[J]. 信息网络安全, 2021, 21(10): 1-7. |
[13] | 徐国天, 盛振威. 基于融合CNN与LSTM的DGA恶意域名检测方法[J]. 信息网络安全, 2021, 21(10): 41-47. |
[14] | 吴警, 芦天亮, 杜彦辉. 基于Char-RNN改进模型的恶意域名训练数据生成技术[J]. 信息网络安全, 2020, 20(9): 6-11. |
[15] | 王文华, 郝新, 刘焱, 王洋. AI系统的安全测评和防御加固方案[J]. 信息网络安全, 2020, 20(9): 87-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||