信息网络安全 ›› 2021, Vol. 21 ›› Issue (12): 109-117.doi: 10.3969/j.issn.1671-1122.2021.12.015

• 入选论文 • 上一篇    下一篇

一种基于改进的Xception网络的深度伪造视频检测模型

马瑞, 蔡满春(), 彭舒凡   

  1. 中国人民公安大学信息网络安全学院,北京 100038
  • 收稿日期:2021-11-05 出版日期:2021-12-10 发布日期:2022-01-11
  • 通讯作者: 蔡满春 E-mail:caimanchun@ppsuc.edu.cn
  • 作者简介:马瑞(1997—),男,江苏,硕士研究生,主要研究方向为信息网络安全|蔡满春(1972—),男,河北,副教授,博士,主要研究方向为密码学与通信保密|彭舒凡(1998—),男,江苏,硕士研究生,主要研究方向为信息网络安全
  • 基金资助:
    “十三五”国家密码发展基金密码理论研究重点课题(MMJJ20180108);中国人民公安大学2020年基本科研业务费(2020JKF101)

A Deep Forgery Video Detection Model Based on Improved Xception Network

MA Rui, CAI Manchun(), PENG Shufan   

  1. College of Information Network Security, People’s Public University of China, Beijing 100038, China
  • Received:2021-11-05 Online:2021-12-10 Published:2022-01-11
  • Contact: CAI Manchun E-mail:caimanchun@ppsuc.edu.cn

摘要:

近年来,随着深度伪造技术的发展,深度伪造的内容变得更加难以识别,这给信息网络的安全带来了严峻的挑战。文章针对深度伪造篡改的内容不易识别以及现有深度伪造检测方法存在的面部特征提取不充分、参数量过大等问题,提出了一种融合Xception网络、SENet与WSDAN的深度伪造检测模型i_Xception。该模型将SE模块嵌入Xception网络中用来提取特征,再利用WSDAN模块对输入图片用注意力引导数据增强,把增强后的图像反馈回网络进行训练,以提高模型的检测精度。在此基础上,文章通过合理减小Xception网络的深度和宽度,设计了一个轻量级的网络模型i_miniXception,大大减少模型的参数。在目前深度伪造检测领域广泛使用的数据集FaceForensics++的两类子数据集FaceSwap和DeepFakes上验证,i_Xception检测的准确率分别达到99.50%和98.83%,i_miniXception检测的准确率分别达到99.17%和98.50%,优于现有的主流算法。

关键词: 深度伪造, 深度学习, Xception网络, 数据增强

Abstract:

In recent years, with the development of deep forgery technology, deep forged content have become more difficult to identify, which has brought severe challenges to the security of information network. Aiming at resolving the difficulty of identifying the content of deep forgery and tampering, as well as the insufficient facial featured extraction and excessive parameter amount in the existing deep forgery detection methods, this paper proposes a deep forgery detection model i_Xception that integrates Xception network, SENet and WSDAN. The model embeds the SE module in the Xception network to extract features, and then uses the WSDAN module to enhance the training images with the guidance of attention, and feeds the augmented images back to the network for training, which improves the detection accuracy of the model. On this basis, this paper designs a lightweight network model i_miniXception by reasonably reducing the depth and width of the Xception network and fusing the above methods, which greatly reduces the parameters of the model. It is verified on the two types of datasets FaceSwap and DeepFakes of FaceForensics++, which are currently widely used in the field of deep forgery detection. The accuracy of i_Xception detection reaches 99.50% and 98.83%, and the accuracy of i_miniXception detection reaches 99.17% and 98.50% respectively, which are better than existing main algorithms.

Key words: deep forgery, deep learning, XceptionNet, data augmentation

中图分类号: