信息网络安全 ›› 2019, Vol. 19 ›› Issue (11): 24-35.doi: 10.3969/j.issn.1671-1122.2019.11.004

• 技术研究 • 上一篇    下一篇

人工智能时代面向运维数据的异常检测技术研究与分析

朱海麒, 姜峰   

  1. 哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨 150001
  • 收稿日期:2019-06-13 出版日期:2019-11-10
  • 通讯作者: 朱海麒 haiqi0789@163.com
  • 作者简介:朱海麒(1995—),男,黑龙江,博士研究生,主要研究方向为智能运维、自然语言处理;姜峰(1978—),男,黑龙江,教授,博士,主要研究方向为人工智能、机器学习、计算机视觉。
  • 基金资助:
    国家重点研发计划[2018YFC0832105]

Research and Analysis of Anomaly Detection Technology for Operation and Maintenance Data in the Era of Artificial Intelligence

ZHU Haiqi, JIANG Feng   

  1. School of Computer Science and Technology, Harbin Institute of Technology, Harbin Heilongjiang 150001, China
  • Received:2019-06-13 Online:2019-11-10

摘要: 随着信息化时代的到来以及人工智能技术在各个领域的落地及实践,IT运维也迎来一个智能化运维的新时代。为了确保大型软硬件系统安全、可靠地运行,需要有专业的运维人员进行系统的部署、运行和维护。运维数据是一系列与大型软硬件系统运行状态相关的参数。运维数据异常检测技术旨在检测大型系统的健康状态,并把运维人员从纷繁复杂的告警和噪声中解放出来。但是,标记数据的稀缺以及企业对准确率的高要求等问题给运维数据异常检测技术的实际应用带来了严峻挑战。文章对运维数据异常进行了描述,并详细介绍了运维数据异常检测的研究现状;在此基础上提出了一种初步的解决方案并给出了实验结果。文章阐述了运维数据异常检测的潜在问题和可能的发展方向,力求为运维数据异常检测技术的发展提供可行的研究思路。

关键词: 人工智能, 运维数据, 异常检测, 深度学习

Abstract: With the arrival of the information age and the landing and practice of artificial intelligent technology in various fields, IT operation and maintenance ushers in a new era of IT intelligent operations and maintenance. In order to ensure the safe and reliable operation of large-scale hardware and software system, it is necessary to have professional operation and maintenance personnel to deploy, operate and maintain the system. Operation and maintenance data is a series of parameters related to the running state of large-scale hardware and software system. The anomaly detection technology of operation and maintenance data is designed to detect the health status of large-scale system and free operation and maintenance personnel from complicated alarms and noises. However, the scarcity of labeled data and the high requirements of enterprises for accuracy bring severe challenges to the practical application of operation and maintenance data anomaly detection technology. This paper describes the abnormal operation and maintenance data, and introduces the research status of operation and maintenance data anomaly detection in detail. On this basis, this paper presents a preliminary solution and gives experimental results. This paper expounds the potential problems and possible development directions of operation and maintenance data anomaly detection, and tries to provide feasible research ideas for the development of operation and maintenance data anomaly detection technology.

Key words: artificial intelligence, operations data, anomaly detection, deep learning

中图分类号: