信息网络安全 ›› 2023, Vol. 23 ›› Issue (2): 54-63.doi: 10.3969/j.issn.1671-1122.2023.02.007

• 技术研究 • 上一篇    下一篇

一种使用Bi-ADMM优化深度学习模型的方案

徐占洋, 程洛飞(), 程建春, 许小龙   

  1. 南京信息工程大学软件学院,南京 210044
  • 收稿日期:2022-10-21 出版日期:2023-02-10 发布日期:2023-02-28
  • 通讯作者: 程洛飞 E-mail:20201221009@nuist.edu.cn
  • 作者简介:徐占洋(1975—),男,江苏,副教授,博士,主要研究方向为区块链、大数据智能分析与处理|程洛飞(1996—),男,安徽,硕士研究生,主要研究方向为分布式凸优化和联邦学习|程建春(1998—),男,山东,硕士研究生,主要研究方向为联邦学习|许小龙(1988—),男,江苏,教授,博士,主要研究方向为大数据、知识图谱、边缘计算和服务计算
  • 基金资助:
    国家自然科学基金(62272236)

A Scheme of Optimizing Deep Learning Model Using Bi-ADMM

XU Zhanyang, CHENG Luofei(), CHENG Jianchun, XU Xiaolong   

  1. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2022-10-21 Online:2023-02-10 Published:2023-02-28
  • Contact: CHENG Luofei E-mail:20201221009@nuist.edu.cn

摘要:

ADMM算法被广泛应用于传统机器学习模型优化领域,它解决了某些深度学习的优化问题。该算法在优化深度学习模型方面的表现已经超过了大多数基于梯度的优化算法,而Bi-ADMM算法比ADMM算法的收敛速度更快、更稳定。文章提出了一种优化深度学习模型方案dlBi-ADMM算法,并用该算法来训练深度学习模型。首先,文章采用加速近端梯度算法优化耦合变量来降低矩阵求逆运算的复杂度;然后,详细给出每个变量的优化子问题的具体函数;最后,通过实验证明文章所提dlBi-ADMM算法优化的结果比dlADMM优化的结果更能提高模型的精度,且dlBi-ADMM算法比dlADMM算法在时间效率上表现更好。

关键词: 深度学习, ADMM, dlADMM, Bi-ADMM, 加速近端梯度算法

Abstract:

ADMM is widely used in the field of traditional machine learning model optimization, and it has solved some deep learning optimization problems, and its performance in deep learning optimization has exceeded most of the gradient-based optimization algorithms. Compared with ADMM, Bi-ADMM converges faster and it is more stable. This paper proposed a optimization scheme (dlBi-ADMM) to optimize deep learning problem, and used an accelerated proximal gradient algorithm to optimize coupled variables to reduce the complexity of matrix inversion operations. Then, it provided the specific function of the optimization subproblem for each variable in detail. Finally, experiments show that the optimization results of the dlBi-ADMM algorithm proposed in this paper can improve the accuracy of the model more than the results of the dlADMM optimization, and the dlBi-ADMM algorithm performs better than the dlADMM algorithm in time efficiency.

Key words: deep learning, ADMM, dlADMM, Bi-ADMM, accelerated proximal gradient algorithms

中图分类号: