信息网络安全 ›› 2023, Vol. 23 ›› Issue (2): 45-53.doi: 10.3969/j.issn.1671-1122.2023.02.006
收稿日期:
2022-09-07
出版日期:
2023-02-10
发布日期:
2023-02-28
通讯作者:
程凯欣
E-mail:ckx_paper@outlook.com
作者简介:
刘珏(1981—),女,江苏,副教授,博士,主要研究方向为物理层安全|程凯欣(1993—),女,辽宁,讲师,博士,主要研究方向为电磁频谱对抗、通信行为识别和人工智能|杨炜伟(1981—),男,四川,副教授,博士,主要研究方向为协同通信、认知无线电和物理层安全
基金资助:
LIU Jue1,2, CHENG Kaixin1(), YANG Weiwei1
Received:
2022-09-07
Online:
2023-02-10
Published:
2023-02-28
Contact:
CHENG Kaixin
E-mail:ckx_paper@outlook.com
摘要:
随着无线电磁设备的不断发展,智能窃听攻击给无线通信领域带来了新挑战。近年来,物理层安全技术作为保障无线通信安全的一种可选技术,获得了人们的广泛关注,尤其是针对智能窃听攻击的研究,取得了重要成果。文章从信号处理技术和无线资源管理两个方面切入,对当前基于物理层安全技术的抗智能窃听研究现状进行总结归纳,并对未来研究方向进行展望。
中图分类号:
刘珏, 程凯欣, 杨炜伟. 智能窃听攻击下的物理层安全技术研究[J]. 信息网络安全, 2023, 23(2): 45-53.
LIU Jue, CHENG Kaixin, YANG Weiwei. Research on Physical Layer Security Technologies for Smart Eavesdropper Attack[J]. Netinfo Security, 2023, 23(2): 45-53.
表1
抗智能窃听的信号处理技术相关研究
方案 | 研究场景 | 解决方案 | 技术指标 |
---|---|---|---|
文献[ | 信道训练 阶段 | 随机相移键控法、合作 检测法 | 主动窃听检出率、 错报警率 |
文献[ | 随机正交导频序列检测法 | 主动窃听检出率 | |
文献[ | 随机训练辅助检测算法 | 主动窃听检出率 | |
文献[ | 最小描述长度标准和 波束赋形 | 安全速率 | |
文献[ | 数据传输 阶段 | 编码方案 | 可达安全速率 |
文献[ | 串接编码方案 | 可达安全速率 | |
文献[ | 波束赋形 | 安全速率 | |
文献[ | 辅助人工噪声 | 遍历安全速率 | |
文献[ | 辅助人工噪声 | 安全容量 | |
文献[ | 波束赋形 | 安全速率 | |
文献[ | 编码设计 | 编码速率 |
表2
抗智能窃听的无线资源管理方法对比
方案 | 研究场景特点 | 主要优化指标 | |
---|---|---|---|
文献[ | 单资源 优化 | 无蜂窝Massive MIMO | 功率系数控制矩阵 |
文献[ | OFDM | 子载波功率分配 | |
文献[ | 无人机辅助通信 | 人工噪声和信号传输功率分配 | |
文献[ | MIMO窃听信道 | 人工噪声和信号传输功率的分配系数 | |
文献[ | 全双工智能窃听器 | 辅助人工噪声 功率分配 | |
文献[ | 全双工智能窃听器 | 功率控制 | |
文献[ | 统计信道状态信息 | 功率控制 | |
文献[ | D2D通信 | 功率控制 | |
文献[ | MIMO窃听信道 | 功率控制 | |
文献[ | D2D通信 | 天线配置 | |
文献[ | 中继通信 | 中继选择 | |
文献[ | 多维资源 联合优化 | 中继通信 | 功率控制、中继选择 |
文献[ | D2D通信 | 蜂窝用户干扰代价因子、D2D用户功率控制 | |
文献[ | 非完美 信息 | 用户行为感知不精确 | 功率控制 |
文献[ | 非完美信道估计 | 功率控制 | |
文献[ | 非完美信道估计和对窃听器攻击行为观测 不精确 | 空中基站最优部署 | |
文献[ | 多智能 窃听器 | 多智能窃听器之间 不串谋 | 空中基站功率控制 |
文献[ | 多个智能窃听器协作 攻击 | 空中基站最优部署 | |
文献[ | 多个智能窃听器协作 攻击 | 人工噪声和信号传输功率的分配系数 |
[1] |
WYNER A D. The Wiretap Channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387.
doi: 10.1002/j.1538-7305.1975.tb02040.x URL |
[2] | SHAFIEE S, ULUKUS S. Achievable Rates in Gaussian MISO Channels with Secrecy Constraints[C]// IEEE. 2007 IEEE International Symposium on Information Theory. New York: IEEE, 2007: 2466-2470. |
[3] | KHISTI A, WORNELL G, WIESEL A, et al. On the Gaussian MIMO Wiretap Channel[C]// IEEE. 2007 IEEE International Symposium on Information Theory. New York: IEEE, 2007: 2471-2475. |
[4] |
WANG Kun, WANG Xiyuan, ZHANG Xianda. SLNR-Based Transmit Beamforming for MIMO Wiretap Channel[J]. Wireless Personal Communications, 2013, 71(1): 109-121.
doi: 10.1007/s11277-012-0798-9 URL |
[5] |
LI Qiang, MA W K. Optimal and Robust Transmit Designs for MISO Channel Secrecy by Semidefinite Programming[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3799-3812.
doi: 10.1109/TSP.2011.2146775 URL |
[6] | HUANG Yangchao, LI Zan, ZHOU Fuhui, et al. Robust AN-Aided Beamforming Design for Secure MISO Cognitive Radio Based on a Practical Nonlinear EH Model[J]. IEEE Access, 2017(5): 14011-14019. |
[7] |
LONG Hang, XIANG Wei, LI Yuli. Precoding and Cooperative Jamming in Multi-Antenna Two-Way Relaying Wiretap Systems without Eavesdropper’s Channel State Information[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(6): 1309-1318.
doi: 10.1109/TIFS.2017.2656846 URL |
[8] |
LI An, WU Qingqing, ZHANG Rui. UAV-Enabled Cooperative Jamming for Improving Secrecy of Ground Wiretap Channel[J]. IEEE Wireless Communications Letters, 2018, 8(1): 181-184.
doi: 10.1109/LWC.2018.2865774 URL |
[9] |
SENDONARIS A, ERKIP E, AAZHANG B. User Cooperation Diversity. Part I. System Description[J]. IEEE Transactions on Communications, 2003, 51(11): 1927-1938.
doi: 10.1109/TCOMM.2003.818096 URL |
[10] |
WANG Wei, TEH K C, LI K H. Generalized Relay Selection for Improved Security in Cooperative DF Relay Networks[J]. IEEE Wireless Communications Letters, 2015, 5(1): 28-31.
doi: 10.1109/LWC.2015.2488660 URL |
[11] | SBOUI L, GHAZZAI H, REZKI Z, et al. Achievable Rates of UAV-Relayed Cooperative Cognitive Radio MIMO Systems[J]. IEEE Access, 2017(5): 5190-5204. |
[12] |
HAN Shujun, XU Xiaodong, TAO Xiaofeng, et al. Joint Power and Sub-Channel Allocation for Secure Transmission in NOMA-Based mMTC Networks[J]. IEEE Systems Journal, 2019, 13(3): 2476-2487.
doi: 10.1109/JSYST.2018.2890039 |
[13] |
AHMED M, SHI Han, CHEN Xinlei, et al. Socially Aware Secrecy-Ensured Resource Allocation in D2D Underlay Communication: An Overlapping Coalitional Game Scheme[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 4118-4133.
doi: 10.1109/TWC.2018.2820693 URL |
[14] |
CHEN Jian, CHEN Xiaoming, GERSTACKER W H, et al. Resource Allocation for a Massive MIMO Relay Aided Secure Communication[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1700-1711.
doi: 10.1109/TIFS.2016.2551685 URL |
[15] |
SAINI R, JINDAL A, DE S. Jammer-Assisted Resource Allocation in Secure OFDMA with Untrusted Users[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(5): 1055-1070.
doi: 10.1109/TIFS.2016.2516912 URL |
[16] |
MAMAGHANI M T, HONG Yi. Joint Trajectory and Power Allocation Design for Secure Artificial Noise Aided UAV Communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2850-2855.
doi: 10.1109/TVT.2021.3057397 URL |
[17] | ZHANG Junyu, WU Fahui, ZHU Yutao, et al. Joint Trajectory and Power Optimization for Mobile Jammer-Aided Secure UAV Relay Network[EB/OL]. (2021-08-01)[2022-08-05]. https://www.sciencedirect.com/science/article/abs/pii/S2214209621000267. |
[18] | AMARIUCAI G T, WEI Shuangqing. Active Eavesdropping in Fast Fading Channels[C]// IEEE. MILCOM 2009 IEEE Military Communications Conference. New York: IEEE, 2009: 1-7. |
[19] | AGGARWAL V, LAI Lifeng, CALDERBANK A R, et al. Wiretap Channel Type II with an Active Eavesdropper[C]// IEEE. 2009 IEEE International Symposium on Information Theory. New York: IEEE, 2009: 1944-1948. |
[20] | MUKHERJEE A, SWINDLEHURST A L. A Full-Duplex Active Eavesdropper in MIMO Wiretap Channels: Construction and Countermeasures[C]// IEEE. 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR). New York:IEEE, 2011: 265-269. |
[21] | ZHU Quanyan, SAAD W, HAN Zhu, et al. Eavesdropping and Jamming in Next-Generation Wireless Networks: A Game-Theoretic Approach[C]// IEEE. 2011-MILCOM Military Communications Conference. New York: IEEE, 2011: 119-124. |
[22] |
YANG Long, CHEN Jian, JIANG Hai, et al. Optimal Relay Selection for Secure Cooperative Communications with an Adaptive Eavesdropper[J]. IEEE Transactions on Wireless Communications, 2016, 16(1): 26-42.
doi: 10.1109/TWC.2016.2617328 URL |
[23] | LI Yanda, XIAO Liang, DAI Huaiyu, et al. Game Theoretic Study of Protecting MIMO Transmissions Against Smart Attacks[C]// IEEE. 2017 IEEE International Conference on Communications (ICC). New York:IEEE, 2017: 1-6. |
[24] |
El-BARDAN R, BRAHMA S, VARSHNEY P K. Strategic Power Allocation with Incomplete Information in the Presence of a Jammer[J]. IEEE Transactions on Communications, 2016, 64(8): 3467-3479.
doi: 10.1109/TCOMM.2016.2577686 URL |
[25] | SAGDUYU Y E, BERRY R, EPHREMIDES A. MAC Games for Distributed Wireless Network Security with Incomplete Information of Selfish and Malicious User Types[C]// IEEE. 2009 International Conference on Game Theory for Networks. New York: IEEE, 2009: 130-139. |
[26] |
KAPETANOVIC D, ZHENG Gan, RUSEK F. Physical Layer Security for Massive MIMO: An Overview on Passive Eavesdropping and Active Attacks[J]. IEEE Communications Magazine, 2015, 53(6): 21-27.
doi: 10.1109/MCOM.2015.7120012 URL |
[27] | HOU Xiaoyun, GAO Chunlong, ZHU Yan, et al. Detection of Active Attacks Based on Random Orthogonal Pilots[C]// IEEE. 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP). New York:IEEE, 2016: 1-4. |
[28] | TIAN Xiaowen, LI Ming, TI Guangyu, et al. Random-Training-Aided Pilot Spoofing Detection[C]// IEEE. 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP). New York:IEEE, 2016: 1-5. |
[29] | TUGNAIT J K. On Mitigation of Active Eavesdropping Attack by Spoofing Relay[C]// IEEE. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). New York:IEEE, 2017: 1-5. |
[30] | LU Xiaohua, HE Yucheng, ZHANG Liangmei, et al. Performance Analysis of Cooperative NOMA Network with Intelligent Eavesdropping[J]. Journal of Signal Processing, 2021, 37(1): 148-157. |
路晓华, 贺玉成, 张良梅, 等. 智能窃听下协作NOMA网络的性能分析[J]. 信号处理, 2021, 37(1):148-157. | |
[31] | GITI J E, SAKZAD A, SRINIVASAN B, et al. Secrecy Capacity Against Adaptive Eavesdroppers in a Random Wireless Network Using Friendly Jammers and Protected Zone[EB/OL]. (2020-09-01)[2022-08-03]. https://www.sciencedirect.com/science/article/abs/pii/S1084804520301727. |
[32] | BAO Zhihua, HU Yingdong, GAO Ruifeng, et al. Design of Secure Beamforming for Two-Way Relay Systems with Active Eavesdropping[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2016, 36(2): 10-17. |
包志华, 胡英东, 高锐锋, 等. 基于主动窃听模型的安全双向中继波束成形方法设计[J]. 南京邮电大学学报(自然科学版), 2016, 36(2):10-17. | |
[33] | DIAO Danyu, WANG Buhong, CAO Kunrui, et al. Secrecy Performance Analysis of UAV-Based Communication Against Full-Duplex Eavesdropping[J]. System Engineering and Electronics, 2022, 44(1): 313-319. |
刁丹玉, 王布宏, 曹堃锐, 等. 全双工窃听下的无人机通信保密性能分析[J]. 系统工程与电子技术, 2022, 44(1):313-319. | |
[34] |
HOANG T M, NGO H Q, DUONG T Q, et al. Cell-Free Massive MIMO Networks: Optimal Power Control Against Active Eavesdropping[J]. IEEE Transactions on Communications, 2018, 66(10): 4724-4737.
doi: 10.1109/TCOMM.2018.2837132 URL |
[35] | JAVAN M R. Guaranteeing Secure Communication in OFDM Network with an Active Eavesdropper[C]// IEEE. 7th International Symposium on Telecommunications (IST’ 2014). New York:IEEE, 2014: 868-872. |
[36] | LIU Chengxi, QUEK T Q S, LEE J. Secure UAV Communication in the Presence of Active Eavesdropper[C]// IEEE. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). New York:IEEE, 2017: 1-6. |
[37] | MUKHERJEE A, SWINDLEHURST A L. Optimal Strategies for Countering Dual-Threat Jamming/Eavesdropping-Capable Adversaries in MIMO Channels[C]// IEEE. 2010-MILCOM 2010 Military Communications Conference. New York: IEEE, 2010: 1695-1700. |
[38] | LIU Zunning, LI Na, TAO Xiaofeng, et al. Artificial-Noise-Aided Secure Communication with Full-Duplex Active Eavesdropper[C]// IEEE. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). New York:IEEE, 2017: 1-7. |
[39] |
YANG Dejun, XUE Guoliang, ZHANG Jin, et al. Coping with a Smart Jammer in Wireless Networks: A Stackelberg Game Approach[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 4038-4047.
doi: 10.1109/TWC.2013.071913121570 URL |
[40] |
TANG Xiao, REN Pinyi, WANG Yicheng, et al. Combating Full-Duplex Active Eavesdropper: A Hierarchical Game Perspective[J]. IEEE Transactions on Communications, 2016, 65(3): 1379-1395.
doi: 10.1109/TCOMM.2016.2645679 URL |
[41] | CHORTI A, PERLAZA S M, HAN Zhu, et al. Physical Layer Security in Wireless Networks with Passive and Active Eavesdroppers[C]// IEEE. 2012 IEEE Global Communications Conference (GLOBECOM). New York:IEEE, 2012: 4868-4873. |
[42] | LUO Yijie, FENG Zhibin, JIANG Han, et al. Game-Theoretic Learning Approaches for Secure D2D Communications Against Full-Duplex Active Eavesdropper[J]. IEEE Access, 2019(7): 41324-41335. |
[43] |
LI Lingxiang, PETROPULU A P, CHEN Zhi. MIMO Secret Communications Against an Active Eavesdropper[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(10): 2387-2401.
doi: 10.1109/TIFS.2017.2705618 URL |
[44] |
FANG He, XU Li, ZOU Yulong, et al. Three-Stage Stackelberg Game for Defending Against Full-Duplex Active Eavesdropping Attacks in Cooperative Communication[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10788-10799.
doi: 10.1109/TVT.2018.2868900 URL |
[45] | LUO Yijie, YANG Yang. Research on Physical Layer Security for D2D Communications with a Probabilistic Active Eavesdropper[J]. Journal of Signal Processing, 2020, 36(5): 710-716. |
罗屹洁, 杨旸. 依概率主动窃听下D2D通信的物理层安全研究[J]. 信号处理, 2020, 36(5):710-716. | |
[46] |
XIAO Liang, XIE Caixia, MIN Minghui, et al. User-Centric View of Unmanned Aerial Vehicle Transmission Against Smart Attacks[J]. IEEE Transactions on Vehicular Technology, 2017, 67(4): 3420-3430.
doi: 10.1109/TVT.2017.2785414 URL |
[47] | LI Chao, XU Yan, XIA Junjuan, et al. Protecting Secure Communication under UAV Smart Attack with Imperfect Channel Estimation[J]. IEEE Access, 2018(6): 76395-76401. |
[48] | LIU Jue, YANG Weiwei, TAO Liwei, et al. Secure UAV Communication under Cooperative Adaptive Eavesdroppers with Incomplete Information[C]// ACM. 2021 4th International Conference on Signal Processing and Machine Learning. New York: ACM, 2021: 82-88. |
[49] | LIU Jue, YANG Weiwei, XU Shiming, et al. Q-Learning Based UAV Secure Communication in Presence of Multiple UAV Active Eavesdroppers[C]// IEEE. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). New York:IEEE, 2019: 1-6. |
[50] | LIU Jue, SHA Nan, YANG Weiwei, et al. Hierarchical Q-Learning Based UAV Secure Communication Against Multiple UAV Adaptive Eavesdroppers[EB/OL]. (2020-10-08)[2022-08-03]. https://dl.acm.org/doi/10.1155/2020/8825120. |
[51] |
WANG Wei, TEH K C, LI K H, et al. On the Impact of Adaptive Eavesdroppers in Multi-Antenna Cellular Networks[J]. IEEE Transactions on Information Forensics and Security, 2017, 13(2): 269-279.
doi: 10.1109/TIFS.2017.2746010 URL |
[52] | DENG Zhixiang, GAO Yuan, CAI Changchun. Joint Resource Allocation for Secrecy Wireless Powered Communication Networks with an Active Eavesdropper[C]// IEEE. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). New York:IEEE, 2017: 633-636. |
[53] | ZHANG Bo, HUANG Kaizhi, LIN Shengbin, et al. A Robust Secure Transmission Scheme Based on Artificial Noise for Resisting Active Eavesdropper in MIMO Heterogeneous Networks[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2186-2193. |
张波, 黄开枝, 林胜斌, 等. MIMO异构网络中一种基于人工噪声的抗主动窃听器的鲁棒安全传输方案[J]. 电子与信息学报, 2020, 42(9): 2186-2193. |
[1] | 赵洪, 李姗, 左珮良, 魏占祯. 基于强化学习的物联网安全资源分配方法[J]. 信息网络安全, 2022, 22(6): 44-52. |
[2] | 丁举鹏, 易芝玲, 王劲涛, 阳辉. 可见光通信物理链路的基准保密容量比较研究[J]. 信息网络安全, 2020, 20(5): 65-71. |
[3] | 胡蝶, 马东堂, 龚旻, 马召. 一种基于PUF的物理层安全认证方法[J]. 信息网络安全, 2020, 20(1): 61-66. |
[4] | 张涛, 刘樵, 李晖. 多天线系统中物理层安全问题研究综述[J]. 信息网络安全, 2016, 16(5): 9-14. |
[5] | 常亮;郭克华. 网络虚拟化环境下的分布式自主资源管理框架设计[J]. , 2013, 13(2): 0-0. |
[6] | 杨斌. 无线通信物理层安全技术研究[J]. , 2012, 12(6): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||