信息网络安全 ›› 2022, Vol. 22 ›› Issue (12): 7-15.doi: 10.3969/j.issn.1671-1122.2022.12.002

• 技术研究 • 上一篇    下一篇

基于生成对抗网络与自编码器的网络流量异常检测模型

郭森森, 王同力, 慕德俊()   

  1. 西北工业大学深圳研究院,深圳 518057
  • 收稿日期:2022-07-05 出版日期:2022-12-10 发布日期:2022-12-30
  • 通讯作者: 慕德俊 E-mail:mudejun@nwpu.edu.cn
  • 作者简介:郭森森(1990—),男,河南,博士研究生,主要研究方向为网络空间安全|王同力(1997—),男,陕西,硕士研究生,主要研究方向为网络空间安全|慕德俊(1963—),男,山东,教授,博士,主要研究方向为密码学、网络空间安全
  • 基金资助:
    国家自然科学基金(62272389);深圳市基础研究资助项目(20210317191843003);陕西省重点研发计划(2021ZDLGY05-01)

Anomaly Detection Model Based on Generative Adversarial Network and Autoencoder

GUO Sensen, WANG Tongli, MU Dejun()   

  1. Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
  • Received:2022-07-05 Online:2022-12-10 Published:2022-12-30
  • Contact: MU Dejun E-mail:mudejun@nwpu.edu.cn

摘要:

近年来,机器学习尤其是深度学习算法在网络流量入侵检测领域得到了广泛应用,数据集样本类别分布情况是影响机器学习算法性能的一个重要因素。针对网络攻击类别多样,现有网络流量数据集类别分布不均的问题,文章提出了一种基于生成对抗网络与自编码器的网络流量异常检测模型。首先,文章使用基于Wasserstein距离的条件生成对抗网络对原始网络流量数据中的少数类别进行重采样;然后,使用堆叠去噪自编码器对重采样后的数据进行重构,获取数据的潜在信息;最后,使用编码器网络结合Softmax网络识别异常网络流量数据。在NSL-KDD入侵检测数据集上进行实验,实验结果表明,文章提出的异常检测模型可以有效提高类别占比不均衡的数据集中数量占比较少的攻击类型的识别率。

关键词: 深度学习, 异常检测, 生成对抗网络, 去噪自编码器

Abstract:

In recent years, machine learning, especially deep learning algorithms, has been widely used in the field of network traffic intrusion detection, the distribution of dataset sample categories is an important factor affecting the performance of machine learning algorithms. To address the problem of diverse network attack categories and uneven distribution of existing network traffic dataset categories, this paper proposed a network traffic anomaly detection model based on generative adversarial networks and self-encoders. Firstly, a conditional generative adversarial network based on Wasserstein distance was used to resample the minority categories in the original network traffic data. Secondly, the resampled data were reconstructed using a stacked denoising self-encoder to obtain potential information of the data. Finally, the encoder network combined with a Softmax network was used to identify anomalous network traffic data. Experiments are conducted on the NSL-KDD intrusion detection dataset, and the experimental results show that proposed anomaly detection model can effectively improve the recognition rate of minority categories.

Key words: deep learning, anomaly detection, generative adversarial networks, denoising autoencoder

中图分类号: