信息网络安全 ›› 2022, Vol. 22 ›› Issue (1): 19-26.doi: 10.3969/j.issn.1671-1122.2022.01.003

• 技术研究 • 上一篇    下一篇

基于RF算法的侧信道攻击方法研究

段晓毅, 李邮, 令狐韫行, 胡荣磊()   

  1. 北京电子科技学院电子与通信工程系,北京 100070
  • 收稿日期:2021-06-11 出版日期:2022-01-10 发布日期:2022-02-16
  • 通讯作者: 胡荣磊 E-mail:huronglei@sina.com
  • 作者简介:段晓毅(1979—),男,贵州,副教授,博士,主要研究方向为芯片安全|李邮(1996—),女,山西,硕士研究生,主要研究方向为芯片安全|令狐韫行(1999—),女,贵州,本科,主要研究方向为芯片安全|胡荣磊(1977—),男,河北,副研究员,博士,主要研究方向为无线网络安全、区块链安全
  • 基金资助:
    国家自然科学基金(61701008);北京市高精尖学科建设项目(20210032Z0401);北京市高精尖学科建设项目(20210033Z0402)

Research on the Method of Side Channel Attack Based on RF Algorithm

DUAN Xiaoyi, LI You, LINGHU Yunxing, HU Ronglei()   

  1. Department of Electronics and Information Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China
  • Received:2021-06-11 Online:2022-01-10 Published:2022-02-16
  • Contact: HU Ronglei E-mail:huronglei@sina.com

摘要:

目前,随机森林(RF)算法在侧信道分析领域的潜力还没有得到充分利用。文章提出一种基于RF算法的侧信道攻击方法,分别从输入数据处理和参数控制两方面进行模型优化,在特征点选择和RF算法参数调优两方面进行改进。对于高维数据,首先使用SOST相关系数法选出100个特征点,然后对RF算法的各参数进行调优。实验结果表明,与采用默认参数值的基于RF算法的侧信道攻击相比,该方法的攻击成功率显著提高,模型的泛化能力也有一定程度的提高。

关键词: 机器学习, 侧信道攻击, RF算法, 模型选择

Abstract:

At present, the full potential of random forest(RF) algorithm in the field of side channel analysis has not been fully utilized. This paper proposed a side channel attack based on RF algorithm, which optimized the model from input data processing and parameter control, and improved it from feature point selection and RF algorithm parameter optimization. For high-dimensional data, the SOST correlation coefficient method was used to select 100 feature points, and then optimize the parameters of RF algorithm. The results show that compared with the RF algorithm directly based on the default parameter value, the attack success rate of this method is dramatically, and the generalization ability of the model is also improved by a certain extent.

Key words: machine learning, side channel attack, RF algorithm, model selection

中图分类号: