信息网络安全 ›› 2019, Vol. 19 ›› Issue (6): 68-75.doi: 10.3969/j.issn.1671-1122.2019.06.009

• 技术研究 • 上一篇    下一篇

基于深度神经网络的异常流量检测算法

陈冠衡(), 苏金树   

  1. 国防科技大学计算机学院,湖南长沙 410073
  • 收稿日期:2019-04-01 出版日期:2019-06-10 发布日期:2020-05-11
  • 作者简介:

    作者简介:陈冠衡(1994—),男,浙江,硕士研究生,主要研究方向为高性能可信网络;苏金树(1962—),男,福建,教授,博士,主要研究方向为计算机网络、网络空间安全。

  • 基金资助:
    国家自然科学基金青年科学基金[61602503]

Abnormal Traffic Detection Algorithm Based on Deep Neural Network

Guanheng CHEN(), Jinshu SU   

  1. School of Computer Science, National University of Defense Technology, Changsha Hunan 410073, China
  • Received:2019-04-01 Online:2019-06-10 Published:2020-05-11

摘要:

随着计算机网络和应用程序的规模呈指数级增长,攻击造成的潜在损害显著增加且越来越明显。传统异常流量检测方法已经不能满足当今互联网安全的需要,因此基于机器学习的算法成为针对复杂且不断增长的网络攻击的有效方法之一。文章提出基于深度神经网络的异常流量检测算法。通过对当前经典数据集进行对比,选择包含更多种攻击和协议类型的ISCX数据集进行实验分析。实验结果表明,与朴素贝叶斯算法对比,文章算法在提高准确率和降低误报率方面有了较大改善,是可用于异常流量检测的高效算法。

关键词: 异常流量检测, 机器学习算法, 网络攻击, 神经网络算法, ISCX数据集

Abstract:

As the scale of computer networks and applications grows exponentially, the potential damage caused by attacks increases significantly and becomes more apparent. Traditional abnormal traffic detection methods can no longer meet the needs of Internet security, so machine learning-based algorithm has become one of the effective methods for complex and growing network attacks. This paper presents an abnormal traffic detection algorithm based on deep neural network. By comparing the current classical data sets, this paper chooses ISCX data set which contains more attack and protocol types for experimental analysis. The experimental results show that compared with naive Bayesian algorithm, the proposed algorithm greatly improves the accuracy and reduces the false alarm rate. It is an efficient algorithm for abnormal traffic detection.

Key words: abnormal traffic detection, machine learning algorithm, network attack, neural network algorithm, ISCX data set

中图分类号: