信息网络安全 ›› 2019, Vol. 19 ›› Issue (6): 68-75.doi: 10.3969/j.issn.1671-1122.2019.06.009
收稿日期:
2019-04-01
出版日期:
2019-06-10
发布日期:
2020-05-11
作者简介:
作者简介:陈冠衡(1994—),男,浙江,硕士研究生,主要研究方向为高性能可信网络;苏金树(1962—),男,福建,教授,博士,主要研究方向为计算机网络、网络空间安全。
基金资助:
Received:
2019-04-01
Online:
2019-06-10
Published:
2020-05-11
摘要:
随着计算机网络和应用程序的规模呈指数级增长,攻击造成的潜在损害显著增加且越来越明显。传统异常流量检测方法已经不能满足当今互联网安全的需要,因此基于机器学习的算法成为针对复杂且不断增长的网络攻击的有效方法之一。文章提出基于深度神经网络的异常流量检测算法。通过对当前经典数据集进行对比,选择包含更多种攻击和协议类型的ISCX数据集进行实验分析。实验结果表明,与朴素贝叶斯算法对比,文章算法在提高准确率和降低误报率方面有了较大改善,是可用于异常流量检测的高效算法。
中图分类号:
陈冠衡, 苏金树. 基于深度神经网络的异常流量检测算法[J]. 信息网络安全, 2019, 19(6): 68-75.
Guanheng CHEN, Jinshu SU. Abnormal Traffic Detection Algorithm Based on Deep Neural Network[J]. Netinfo Security, 2019, 19(6): 68-75.
表1
数据集比较
DARPA | KDD99 | CAIDA | kyoto | ADFA2013 | ISCX2012 | ||
---|---|---|---|---|---|---|---|
网络配置的完整性 | 完整 | 完整 | 完整 | 完整 | 完整 | 完整 | |
流量完整性 | 不完整 | 不完整 | 完整 | 不完整 | 完整 | 完整 | |
数据集标记 | 是 | 是 | 否 | 是 | 是 | 是 | |
交互完整性 | 完整 | 完整 | 不完整 | 完整 | 完整 | 完整 | |
捕获完整性 | 完整 | 完整 | 不完整 | 完整 | 完整 | 完整 | |
可用 协议 类型 | HTTP | 可用 | 可用 | - | 可用 | 可用 | 可用 |
HTTPS | 不可用 | 不可用 | - | 可用 | 不可用 | 可用 | |
SSH | 可用 | 可用 | - | 可用 | 可用 | 可用 | |
FTP | 可用 | 可用 | - | 可用 | 可用 | 可用 | |
可用 | 可用 | - | 可用 | 可用 | 可用 | ||
攻击 类型 多样性 | Browser | 不包含 | 不包含 | 不包含 | 包含 | 包含 | 包含 |
Bforce | 包含 | 包含 | 不包含 | 包含 | 包含 | 包含 | |
DoS | 包含 | 包含 | 包含 | 包含 | 不包含 | 包含 | |
Scan | 包含 | 包含 | 包含 | 包含 | 不包含 | 包含 | |
Bdoor | 不包含 | 不包含 | 不包含 | 包含 | 包含 | 包含 | |
DNS | 不包含 | 不包含 | 包含 | 包含 | 不包含 | 不包含 | |
其他 | 包含 | 包含 | 包含 | 包含 | 包含 | 包含 | |
异构型 | 不具有 | 不具有 | 不具有 | 不具有 | - | 具有 |
[1] | HORNG S J, SU Mingyang, CHEN Y H, et al.A Novel Intrusion Detection System Based on Hierarchical Clustering and Support Vector Machines[J]. Expert Systems with Applications, 2011, 38(1): 306-313. |
[2] | BOSER B E, GUYON I M, VAPNIK V N.A Training Algorithm for Optimal Margin Classifiers[C]//ACM. The 5th Annual ACM Workshop on Computational Learning Theory, July 27-29, Pittsburgh, Pennsylvania, USA. New York: ACM, 1992: 144-152. |
[3] | ALAZAB A, HOBBS M, ABAWAJY J, et al.Using Response Action with Intelligent Intrusion Detection and Prevention System against Web Application Malware[J]. Information Management & Computer Security, 2014, 22(5): 431-449. |
[4] | AVCI E, COTELI R.A New Automatic Target Recognition System Based on Wavelet Extreme Learning Machine[J]. Expert Systems with Applications, 2012, 39(16): 12340-12348. |
[5] | BUCZAK A L, GUVEN E.A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1153-1176. |
[6] | LAI Haiguang, CAI Shengwen, HUANG Hao, et al.A Parallel Intrusion Detection System for High-speed Networks[M]//Springer. Applied Cryptography and Network Security. Heidelberg: Springer, Berlin, Heidelberg, 2004: 439-451. |
[7] | FENG Yong, WU Zhongfu, WU Kaigui, et al.An Unsupervised Anomaly Intrusion Detection Algorithm Based on Swarm Intelligence[C]//IEEE. 2005 International Conference on Machine Learning and Cybernetics, August 18-21, 2005 , Guangzhou, China.NJ: IEEE, 2005: 3965-3969. |
[8] | LEE S W, VERRI A.Pattern Recognition with Support Vector Machines[M]. Berlin : Springer-Verlag, Berlin, 2002. |
[9] | MASUD M, GAO J, KHAN L, et al.Mining Concept-drifting Data Stream to Detect Peer-to-peer Botnet Traffic[C]// IEEE. 2008 International Conference on Intelligence and Security Informatics, June 17-20, 2008, Taipei, China. NJ: IEEE, 2008: 29-30. |
[10] | YU Xiaocong, DONG Xiaomei, YU Ge, et al.Online Botnet Detection Based on Incremental Discrete Fourier Transform[J]. Journal of Networks, 2010, 5(5): 568-576. |
[11] | FEILY M, SHAHRESTANI A, RAMADASS S.A Survey of Botnet and Botnet Detection[C]//IEEE. The Third International Conference on Emerging Security Information, Systems and Technologies, June 18-23, 2009, Athens, Glyfada, Greece. NJ: IEEE, 2009: 268-73. |
[12] | SUN Yongjia, YUAN Ye, WANG G.An On-line Sequential Learning Method in Social Networks for Node Classification[J]. Neurocomputing, 2015, 149: 207-214. |
[13] | CHENG Chi, TAY W P, HUANG Guangbin.Extreme Learning Machines for Intrusion Detection[C]//IEEE. The 2012 International Joint Conference on Neural Networks, June 10-15, 2012, Brisbane, QLD, Australia. NJ: IEEE, 2012: 1-8. |
[14] | MCHUGH J.Testing Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln Laboratory[J]. ACM Transactions on Information and System Security , 2000, 3(4): 262-294. |
[15] | BROWN C, COWPERTHWAITE A, HIJAZI A, Analysis of the 1999 DARPA/Lincoln Laboratory IDS Evaluation Data with NetADHICT[C]//IEEE. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, July 8-10, 2009 , Ottawa, ON, Canada . NJ: IEEE, 2009: 1-7. |
[16] | KDD Cup 1999 Data [EB/OL]. , 2019-3-15. |
[17] | TAVALLAEE M, BAGHERI E, LU Wei, et al. A Detailed Analysis of the KDD CUP 99 Data Set[C]//IEEE.2019 IEEE Symposium on Computational Intelligence for Security and Defense Applications, July 8-10, 2009, Ottawa, ON, Canada. NJ: IEEE: 1-6. |
[18] | CAIDA. The CAIDA Anonymized Internet Traces Dataset 2008- Ongoing [EB/OL]. , 2019-3-15. |
[19] | CAIDA. CAIDA DDoS Attack Dataset[EB/OL]. , 2019-3-15. |
[20] | CAIDA. CAIDA Anonymized Internet Traces 2016 Dataset [EB/OL]. ,2019-3-15. |
[21] | SONG J, TAKAKURA H, OKABE Y, et al.Statistical Analysis of Honeypot Data and Building of Kyoto 2006+ Dataset for NIDS Evaluation[C]//ACM. The First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, April 10 , 2011 , Salzburg, Austria . New York: ACM, 2011: 29-36. |
[22] | SATO M, YAMAKI H, TAKAKURA H.Unknown Attacks Detection Using Feature Extraction from Anomaly-based IDS Alerts[C]//IEEE. 2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet, July 16-20 , 2012, Izmir, Turkey. NJ: IEEE, 2012: 273-277. |
[23] | CHITRAKAR R, HUANG Chuanhe.Anomaly Based Intrusion Detection Using Hybrid Learning Approach of Combining k-Medoids Clustering and Naive Bayes Classification[C]//IEEE. 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing, September 21-23, 2012, Shanghai, China. NJ: IEEE, 2012: 1-5. |
[24] | CREECH G, HU Jianhun.Generation of a New IDS Test Dataset: Time to Retire the KDD Collection[C]//IEEE. 2013 IEEE Wireless Communications and Networking Conference, April 7-10, 2013, Shanghai, China. NJ: IEEE, 2013: 4487-4492. |
[25] | XIE Miao, HU Jiankun.Evaluating Host-based Anomaly Detection Systems: A Preliminary Analysis of ADFA-LD[C]//IEEE. 2013 6th International Congress on Image and Signal Processing, December 16-18, 2013, Hangzhou, China. NJ: IEEE, 2013: 1711-1716. |
[26] | XIE Miao, HU Jiankun, SLAY J.Evaluating Host-based Anomaly Detection Systems: Application of the One-class SVM Algorithm to ADFA-LD[C]//IEEE. 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery, August 19-21, 2014 , Xiamen, China. NJ: IEEE, 2014: 978-982. |
[27] | HE Xiang, LIU Sheng, JIANG Jiguo.Comparative Study of Intrusion Detection Methods Based on Machine Learning[J]. Netinfo Security, 2018, 18(5): 1-11. |
和湘,刘晟,姜吉国.基于机器学习的入侵检测方法对比研究[J].信息网络安全,2018,18(5):1-11. | |
[28] | UNB. Intrusion Detection Evaluation Dataset (ISCXIDS2012) [EB/OL]. , 2019-3-15. |
[29] | YASSIN W, UDZIR1 N I, MUDA Z, et al. Anormaly-based Intrusion Detection through K-Means Clustering and Naivesbayes Classification[C]// ICOCI. The 4th International Conference on Computing and Informatics, August 28-30, 2013 , Sarawak, Malaysia. Universiti Utara Malaysia, 2013: 298-303. |
[30] | CHEN Hongsong, WANG Gang, SONG Jianlin.Research on Anomaly Behavior Classification Algorithm of Internal Network User Based on Cloud Computing Intrusion Detection Data Set[J]. Netinfo Security, 2018, 18(3): 1-7. |
陈红松,王钢,宋建林.基于云计算入侵检测数据集的内网用户异常行为分类算法研究[J].信息网络安全,2018,18(3):1-7. |
[1] | 王腾飞, 蔡满春, 芦天亮, 岳婷. 基于iTrace_v6的IPv6网络攻击溯源研究[J]. 信息网络安全, 2020, 20(3): 83-89. |
[2] | 张浩, 陈龙, 魏志强. 基于数据增强和模型更新的异常流量检测技术[J]. 信息网络安全, 2020, 20(2): 66-74. |
[3] | 董威, 李永刚. 基于复杂网络的智能电网网络攻击影响分析研究[J]. 信息网络安全, 2020, 20(1): 52-60. |
[4] | 陈良臣, 刘宝旭, 高曙. 网络攻击检测中流量数据抽样技术研究[J]. 信息网络安全, 2019, 19(8): 22-28. |
[5] | 傅建明, 黎琳, 郑锐, 苏日古嘎. 基于GAN的网络攻击检测研究综述[J]. 信息网络安全, 2019, 19(2): 1-9. |
[6] | 郭敏, 曾颖明, 姚金利, 达小文. 基于大数据样本的软件行为安全分析[J]. 信息网络安全, 2017, 17(9): 153-156. |
[7] | 徐燕. 基于数据挖掘的网络链接预测研究[J]. 信息网络安全, 2017, 17(6): 30-34. |
[8] | 张腾飞, 张谦, 刘嘉勇. 基于AdaBoost-Bayes算法的URL分类方法[J]. 信息网络安全, 2017, 17(3): 66-71. |
[9] | 夏玉明, 胡绍勇, 朱少民, 刘丽丽. 基于卷积神经网络的网络攻击检测方法研究[J]. 信息网络安全, 2017, 17(11): 32-36. |
[10] | 宋国江, 肖荣华, 晏培. 工业控制系统中PLC面临的网络空间安全威胁[J]. 信息网络安全, 2016, 16(9): 228-233. |
[11] | 胡洋瑞, 陈兴蜀, 王俊峰, 叶晓鸣. 基于流量行为特征的异常流量检测[J]. 信息网络安全, 2016, 16(11): 45-51. |
[12] | 俞诗源, 程三军. 大数据工具在网络攻击监测中的应用[J]. 信息网络安全, 2015, 15(9): 149-153. |
[13] | 芦天亮, 周运伟, 曹巍. 移动互联网攻击技术及违法犯罪手段分析[J]. 信息网络安全, 2014, 14(9): 176-179. |
[14] | 严俊龙. 基于Metasploit框架自动化渗透测试研究[J]. , 2013, 13(2): 0-0. |
[15] | 吴轩亮. 三网融合下城域网DDoS攻击的监测及防范技术研究[J]. , 2012, 12(3): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||