信息网络安全 ›› 2021, Vol. 21 ›› Issue (10): 69-75.doi: 10.3969/j.issn.1671-1122.2021.10.010
收稿日期:
2021-05-06
出版日期:
2021-10-10
发布日期:
2021-10-14
通讯作者:
蔡满春
E-mail:caimanchun@ppsuc.edu.cn
作者简介:
马骁(1997—),男,山东,硕士研究生,主要研究方向为信息网络安全|蔡满春(1972—),男,河北,副教授,博士,主要研究方向为密码学与通信保密|芦天亮(1985—),男,河北,副教授,博士,主要研究方向为恶意代码与人工智能安全
基金资助:
MA Xiao, CAI Manchun(), LU Tianliang
Received:
2021-05-06
Online:
2021-10-10
Published:
2021-10-14
Contact:
CAI Manchun
E-mail:caimanchun@ppsuc.edu.cn
摘要:
近年来,新型僵尸网络开始攻击命令与控制(C&C)服务器,并利用域名生成算法(DGA)来躲避检测。传统的域名生成算法存在寻址效率不高、域名相应代码流量太大导致通信容易被检测发现等弊端。文章通过改进传统的CNN模型,结合文本生成的相关思想,利用Bi-LSTM的自注意力机制来生成恶意域名。最终结果表明,该方法生成的域名数据在对比实验中表现良好,可以模拟真实的域名数据,提高了恶意域名检测效率。
中图分类号:
马骁, 蔡满春, 芦天亮. 基于CNN改进模型的恶意域名训练数据生成技术[J]. 信息网络安全, 2021, 21(10): 69-75.
MA Xiao, CAI Manchun, LU Tianliang. Malicious Domain Name Training Data Generation Technology Based on Improved CNN Model[J]. Netinfo Security, 2021, 21(10): 69-75.
[1] | YUAN Chen, QIAN Liping, ZHANG Hui, et al. Generation of Malicious Domain Training Data Based on Generative Adversarial Network[J]. Application Research of Computers, 2019, 36(5):1540-1543. |
袁辰, 钱丽萍, 张慧, 等. 基于生成对抗网络的恶意域名训练数据生成[J]. 计算机应用研究, 2019, 36(5):1540-1543. | |
[2] | YERIMA S, ALZAYLAEE M, SHAJAN A. Deep Learning Techniques for Android Botnet Detection[J]. Electronics (Basel), 2021, 10(4):519-535. |
[3] | LIN Shaoqing, ZHONG Shangping, CHENG Kaizhi, et al. Method with Pre-trained Word Vectors for Detecting Wordlist-based Malicious Domain Names[J]. Journal of Physics Conference Series, 2021, 1757(1):12171-12177. |
[4] |
TRAN D, MAC H, TONG V, et al. A LSTM Based Framework for Handling Multiclass Imbalance in DGA Botnet Detection[J]. Neurocomputing, 2018, 275(1):2401-2413.
doi: 10.1016/j.neucom.2017.11.018 URL |
[5] | WOODBRIDGE J, ANDERSON H S, AHUJA A, et al. Predicting Domain Generation Algorithms with Long Short-term Memory Networks[EB/OL]. https://arxiv.org/abs/1611. 00791, 2016-11-02. |
[6] | XU Guotian. Generation Algorithm Crack Based on DGA Domain Name of Malicious Program[J]. Netinfo Security, 2017, 17(9):26-29. |
徐国天. 基于DGA的恶意程序域名生成算法破解[J]. 信息网络安全, 2017, 17(9):26-29. | |
[7] | YANG Luhui, LIU Guangjie, ZHAI Jiangtao, et al. Improved Algorithm for Detection of the Malicious Domain Name Based on the Convolutional Neural Network[J]. Journal of Xidian University, 2020, 47(1):37-43. |
杨路辉, 刘光杰, 翟江涛, 等. 一种改进的卷积神经网络恶意域名检测算法[J]. 西安电子科技大学学报, 2020, 47(1):37-43. | |
[8] |
CUCCHIARELLI A, MORBIDONI C, SPALAZZI L, et al. Algorithmically Generated Malicious Domain Names Detection Based on N-grams Features[J]. Expert Systems with Applications, 2021, 170(5):114551-114566.
doi: 10.1016/j.eswa.2020.114551 URL |
[9] | WANG Yuanyuan, WU Chunjiang, LIU Qihe, et al. Overview of Malicious Domain Name Detection and Appliciation[J]. Computer Applications and Software, 2019, 36(9):310-316. |
王媛媛, 吴春江, 刘启和, 等. 恶意域名检测研究与应用综述[J]. 计算机应用与软件, 2019, 36(9):310-316. | |
[10] | CHEN Zhao, XU Ruifeng, GUI Lin, et al. Combining Convolutional Neural Networks and Word Sentiment Sequences Features for Chinese Text Sentiment Analysis[J]. Journal of Chinese Information Processing, 2015, 29(6):172-178. |
陈钊, 徐睿峰, 桂林, 等. 结合卷积神经网络和词语情感序列特征的中文情感分析[J]. 中文信息学报, 2015, 29(6):172-178. | |
[11] | WANG Jingbo, MENG Lingjun. Convolutional Neural Network Face Detection Algorithm[J]. Application of Electronic Technique, 2020, 46(1):34-38. |
王静波, 孟令军. 卷积神经网络人脸检测算法[J]. 电子技术应用, 2020, 46(1):34-38. | |
[12] | LU Yubo, LIU Derun, CAI Yichao, et al. Chinese Weibo Sentiment Classification Based on cw2vec and CNN-BiLSTM Attention Model[J]. Software Guide, 2021, 20(3):51-56. |
卢昱波, 刘德润, 蔡奕超, 等. 基于cw2vec与CNN-BiLSTM注意力模型的中文微博情感分类[J]. 软件导刊, 2021, 20(3):51-56. | |
[13] | CAO Zhengzhi, YE Chunming. Prediction of Bearing Remaining useful Life Based on Parallel CNN-SE-Bi-LSTM[EB/OL]. https://doi.org/10.19734/j.issn.1001-3695.2020.08.0224, 2021-03-05. |
曹正志, 叶春明. 基于并联CNN-SE-Bi-LSTM的轴承剩余使用寿命预测[EB/OL]. https://doi.org/10.19734/j.issn.1001-3695.2020.08.0224, 2021-03-05. | |
[14] |
ZHONG Rui, WANG Rui, ZOU Yang, et al. Graph Attention Networks Adjusted Bi-LSTM for Video Summarization[J]. IEEE Signal Processing Letters, 2021, 28(1):663-667.
doi: 10.1109/LSP.2021.3066349 URL |
[15] | YIN Liangliang, SUN Hongguang, JIA Huiting, et al. Text Sentiment Analysis Method Based on a Two-way Multi-dimensional Selfattention Mechanism[J]. China Computer and Communication, 2019, 7(9):45-48. |
尹良亮, 孙红光, 贾慧婷, 等. 基于双向多维度自注意力机制的文本情感分析方法[J]. 信息与电脑(理论版), 2019, 7(9):45-48. | |
[16] | DU Lin, CAO Dong, LIN Shuyuan, et al. Extraction and Automatic Classification of TCM Medical Records Based on Attention Mechanism of BERT and Bi-LSTM[J]. Computer Science, 2020, 47(S2):416-420. |
杜琳, 曹东, 林树元, 等. 基于BERT与Bi-LSTM融合注意力机制的中医病历文本的提取与自动分类[J]. 计算机科学, 2020, 47(S2):416-420. | |
[17] | CHENG Hua, CAI Jing, FANG Yiquan. RL-Gen: A Character Level Text Generation Framework with Reinforcement Learning in Domain Generation Algorithm Case [C]//Springer. International Conference on Neural Information Processing, December 12-15, 2019, Sydney, Australia. Berlin: Springer, 2019: 690-697. |
[18] | LUO Quan, LIU Zhi. A Word Operation Exercises Auto-scoring Algorithm Based on Levenshtein Distance[J]. Modern Computer, 2020, 32(1):90-93. |
罗泉, 刘芝. 基于Levenshtein距离的Word操作题自动评分算法[J]. 现代计算机, 2020, 32(1):90-93. | |
[19] | CAMARA A, DAN G. Research on Information Processing in Management Information System of Soguifret S.a.r.l Company in Guinea Based Levenshtein Algorithm[J]. Journal of Physics Conference Series, 2021, 1820(1):12155-12161. |
[20] | WANG Jing, BAO Gui. Comparison of Bayesian Statistics with Traditional Statistical Methods[J]. Statistics and Decision, 2021, 37(1):24-29. |
王婧, 鲍贵. 贝叶斯统计与传统统计方法的比较[J]. 统计与决策, 2021, 37(1):24-29. | |
[21] | LI Jing. Land Complex was Classified Based on an Object-oriented Approach Based on Random Forest Versus J48 Decision Tree[J]. Technology Innovation and Application, 2021, 1(10):136-139. |
李靖. 基于随机森林与J48决策树的面向对象方法的土地覆被分类[J]. 科技创新与应用, 2021, 1(10):136-139. | |
[22] | ZHENG Xiandong, FENG Wenlong, HUANG Mengxing, et al. Optimization of PBFT Algorithm Based on Improved C4.5[J]. Mathematical Problems in Engineering, 2021, 2021(2):1-7. |
[23] | WANG Yanguang, ZHU Hongbin, XU Weichao. A Review on ROC Curve and Analysis[J]. Journal of Guangdong University of Technology, 2021, 38(1):46-53. |
王彦光, 朱鸿斌, 徐维超. ROC曲线及其分析方法综述[J]. 广东工业大学学报, 2021, 38(1):46-53. |
[1] | 弋晓洋, 张健. 基于图像的网络钓鱼邮件检测方法研究[J]. 信息网络安全, 2021, 21(9): 52-58. |
[2] | 李彦霖, 蔡满春, 芦天亮, 席荣康. 遗传算法优化CNN的网站指纹攻击方法[J]. 信息网络安全, 2021, 21(9): 59-66. |
[3] | 郭春, 蔡文艳, 申国伟, 周雪梅. 基于关键载荷截取的SQL注入攻击检测方法[J]. 信息网络安全, 2021, 21(7): 43-53. |
[4] | 郭烜臻, 潘祖烈, 沈毅, 陈远超. 一种基于被动DNS数据分析的DNS重绑定攻击检测技术[J]. 信息网络安全, 2021, 21(3): 87-95. |
[5] | 杨铭, 张健. 基于图像识别的恶意软件静态检测模型[J]. 信息网络安全, 2021, 21(10): 25-32. |
[6] | 徐国天, 盛振威. 基于融合CNN与LSTM的DGA恶意域名检测方法[J]. 信息网络安全, 2021, 21(10): 41-47. |
[7] | 李桥, 龙春, 魏金侠, 赵静. 一种基于LMDR和CNN的混合入侵检测模型[J]. 信息网络安全, 2020, 20(9): 117-121. |
[8] | 徐瑜, 周游, 林璐, 张聪. 无监督机器学习在游戏反欺诈领域的应用研究[J]. 信息网络安全, 2020, 20(9): 32-36. |
[9] | 吴警, 芦天亮, 杜彦辉. 基于Char-RNN改进模型的恶意域名训练数据生成技术[J]. 信息网络安全, 2020, 20(9): 6-11. |
[10] | 王湘懿, 张健. 基于图像和机器学习的虚拟化平台异常检测[J]. 信息网络安全, 2020, 20(9): 92-96. |
[11] | 刘静, 张学谦, 刘全明. 混合Gabor的轻量级卷积神经网络的验证码识别研究[J]. 信息网络安全, 2020, 20(7): 77-84. |
[12] | 罗峥, 张学谦. 基于思维进化算法优化S-Kohonen神经网络的恶意域名检测模型[J]. 信息网络安全, 2020, 20(6): 82-89. |
[13] | 张永生, 王志, 武艺杰, 杜振华. 基于Conformal Prediction的威胁情报繁殖方法[J]. 信息网络安全, 2020, 20(6): 90-95. |
[14] | 张蕾华, 黄进, 张涛, 王生玉. 视频侦查中人像智能分析应用及算法优化[J]. 信息网络安全, 2020, 20(5): 88-93. |
[15] | 郭春, 陈长青, 申国伟, 蒋朝惠. 一种基于可视化的勒索软件分类方法[J]. 信息网络安全, 2020, 20(4): 31-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||