信息网络安全 ›› 2020, Vol. 20 ›› Issue (7): 77-84.doi: 10.3969/j.issn.1671-1122.2020.07.009
收稿日期:
2020-01-15
出版日期:
2020-07-10
发布日期:
2020-08-13
通讯作者:
刘全明
E-mail:liuqm@sxu.edu.cn
作者简介:
刘静(1978—),女,山东,硕士,主要研究方向为网络安全|张学谦(1981—),男,重庆,本科,主要研究方向为网络安全、等级保护|刘全明(1973—),男,山西,副教授,博士,主要研究方向为网络行业分析与数据挖掘、云存储与云安全、物联网应用
基金资助:
LIU Jing1, ZHANG Xueqian2, LIU Quanming3()
Received:
2020-01-15
Online:
2020-07-10
Published:
2020-08-13
Contact:
Quanming LIU
E-mail:liuqm@sxu.edu.cn
摘要:
验证码作为一项广泛使用的验证手段,能有效地鉴别登录用户,对网络安全的保护有着重要的意义。针对卷积神经网络参数量大,训练成本和时间较大的问题,文章提出了一种基于图像Gabor特征与卷积神经网络相结合的图像验证码识别方法,实现了验证码图像的识别和分类。使用Gabor算子提取不同方向和角度的细节特征作为卷积神经网络的输入,并改进深度可分离卷积层获得多尺度特征向量,充分提取验证码图像中的不同特征,提高了模型的识别率。实验研究表明,改进的卷积神经网络对验证码的平均识别准确率达到98%左右,具有实际意义。
中图分类号:
刘静, 张学谦, 刘全明. 混合Gabor的轻量级卷积神经网络的验证码识别研究[J]. 信息网络安全, 2020, 20(7): 77-84.
LIU Jing, ZHANG Xueqian, LIU Quanming. Research on Captcha Recognition of Lightweight Convolutional Neural Network with Gabor[J]. Netinfo Security, 2020, 20(7): 77-84.
[1] | KWON H, KIM Y, YOON H, et al. CAPTCHA Image Generation Systems Using Generative Adversarial Networks[J]. Ieice Transactions on Information & Systems, 2018,12(2):543-546. |
[2] | WANG F, JUN G H, FAN G, et al. Chinese Character CAPTCHA Recognition Based on Convolution Neural Network[EB/OL]. https://www.researchgate.net/publication/311251657_Chinese_character_CAPTCHA_recognition_based_on_convolution_neural_network, 2019-10-15. |
[3] |
KAZUMA A. Server for Implementing Image Processing Functions Requested by A Printing Device[J]. Environmental Pollution, 2018,152(3):543-552.
URL pmid: 17703858 |
[4] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deep Lab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834.
doi: 10.1109/TPAMI.2017.2699184 URL pmid: 28463186 |
[5] | MILTIADIS A, BARR E T, PREMKUMAR D, et al. A Survey of Machine Learning for Big Code and Naturalness[J]. ACM Computing Surveys, 2018,51(4):1-37. |
[6] | RAISSI M, KARNIADAKIS G E. Hidden Physics Models: Machine Learning of Nonlinear Partial, Differential Equations[EB/OL]. http://www.researchgate.net/publication/318868462_Hidden_Physics_Models_Machine_Learning_of_Nonlinear_Partial_Differential_Equations, 2019-10-15. |
[7] | CHEN X, MAKKI K, YEN K, et al. Sensor Network Security: A Survey[J]. IEEE Communications Surveys & Tutorials, 2009,11(2):52-73. |
[8] | SARWAR S S, PANDA P, ROY K. Gabor Filter Assisted Energy Efficient Fast Learning Convolutional Neural Networks[C]// IEEE. 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), July 24-26, 2017, Taipei, China. NJ: IEEE, 2017: 1-6. |
[9] | MEHTA R, EGIAZARIAN K. Dominant Rotated Local Binary Patterns (DRLBP) for Texture Classification[J]. Pattern Recognition Letters, 2016,71(11):16-22. |
[10] | YI K M, TRULLS E, LEPETIT V, et al. Lift: Learned Invariant Feature Transform[EB/OL]. http://www.researchgate.net/publication/308277668_LIFT_Learned_Invariant_Feature_Transform, 2019-10-15. |
[11] | YAN G, YU M, YU Y, et al. Real-Time Vehicle Detection Using Histograms of Oriented Gradients and AdaBoost Classification[J]. Optik, 2016,127(19):7941-7951. |
[12] | WANG Hu, FENG Lin, SUN Yuzhe. Research and Design of Digital Character-Based CAPTCHA Decoder[J]. Computer Engineering and Applications, 2007,43(32):86-88. |
王虎, 冯林, 孙宇哲. 数字验证码识别算法的研究和设计[J]. 计算机工程与应用, 2007,43(32):86-88. | |
[13] | TIAN Huaichuan. Research and Application on Captcha Recognition and Prevention Based on Neural Network[D]. Harbin: Harbin Institute of Technology, 2010. |
田怀川. 基于神经网络的图形验证码识别及防识别的研究与应用[D]. 哈尔滨:哈尔滨工业大学, 2010. | |
[14] | GANG Lv, HAO Ping. Research on Recognition of CAPTCHA Based on Neural Network[J]. Journal of Zhejiang University of Technology, 2010,38(4):433-436. |
吕刚, 郝平. 基于神经网络的数字验证码识别研究[J]. 浙江工业大学学报, 2010,38(4):433-436. | |
[15] | CAO Yanrong, GONG Yanhong, JIA Huizhen. Verification Code Recognition Method Based on Adversarial Network[J]. Computer Engineering and Applications, 2020,56(8):199-204. |
曹廷荣, 龚燕红, 贾惠珍. 基于对抗网络的验证码识别方法[J]. 计算机工程与应用, 2020,56(8):199-204. | |
[16] | SCHMIDHUBER , JÜRGEN . Deep Learning in Neural Networks: An Overview[J]. Neural Networks, 2015,61(1):85-117. |
[17] |
LITJENS , GEERT , KOOI , et al. A Survey on Deep Learning in Medical Image Analysis[J]. Medical Image Analysis, 2017,42(9):60-88.
doi: 10.1016/j.media.2017.07.005 URL |
[18] |
SHIN H C, ROTH H R, GAO M, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN, Architectures, Dataset Characteristics and Transfer Learning[J]. IEEE Transactions on Medical Imaging, 2016,35(5):1285-1298.
doi: 10.1109/TMI.2016.2528162 URL pmid: 26886976 |
[19] |
ZHANG Q, YANG L T, CHEN Z, et al. A Survey on Deep Learning for Big Data[J]. Information Fusion, 2018,42(10):146-157.
doi: 10.1016/j.inffus.2017.10.006 URL |
[20] | LEDDY J. Ultrathin Layer Convolution[J]. Journal of Electroanalytical Chemistry, 1991,300(1-2):295-307. |
[21] |
LUAN S, CHEN C, ZHANG B, et al. Gabor Convolutional Networks[J]. IEEE Transactions on Image Processing, 2018,27(9):1.
doi: 10.1109/TIP.2017.2787262 URL |
[22] | SZEGEDY C, LIU W, JIA Y, et al. Going Deeper with Convolutions[C]// IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. NJ: IEEE, 2015: 1-9. |
[23] | CHOLLET F. Xception: Deep Learning with Depthwise Separable Convolutions[C]// IEEE. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu. NJ: IEEE, 2017: 1800-1807. |
[1] | 李桥, 龙春, 魏金侠, 赵静. 一种基于LMDR和CNN的混合入侵检测模型[J]. 信息网络安全, 2020, 20(9): 117-121. |
[2] | 王湘懿, 张健. 基于图像和机器学习的虚拟化平台异常检测[J]. 信息网络安全, 2020, 20(9): 92-96. |
[3] | 张蕾华, 黄进, 张涛, 王生玉. 视频侦查中人像智能分析应用及算法优化[J]. 信息网络安全, 2020, 20(5): 88-93. |
[4] | 王蓉, 马春光, 武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4): 47-54. |
[5] | 龙敏, 龙啸海, 马莉. 基于深度卷积神经网络的指纹活体检测算法研究[J]. 信息网络安全, 2018, 18(6): 28-35. |
[6] | 夏玉明, 胡绍勇, 朱少民, 刘丽丽. 基于卷积神经网络的网络攻击检测方法研究[J]. 信息网络安全, 2017, 17(11): 32-36. |
[7] | 胡青, 刘本永. 基于卷积神经网络分类的说话人识别算法[J]. 信息网络安全, 2016, 16(4): 55-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||