信息网络安全 ›› 2020, Vol. 20 ›› Issue (7): 77-84.doi: 10.3969/j.issn.1671-1122.2020.07.009

• 技术研究 • 上一篇    下一篇

混合Gabor的轻量级卷积神经网络的验证码识别研究

刘静1, 张学谦2, 刘全明3()   

  1. 1.公安部第三研究所,上海 200031
    2.四川省公安厅网络安全保卫总队,成都 610000
    3.山西大学计算机与信息技术学院,太原 030006
  • 收稿日期:2020-01-15 出版日期:2020-07-10 发布日期:2020-08-13
  • 通讯作者: 刘全明 E-mail:liuqm@sxu.edu.cn
  • 作者简介:刘静(1978—),女,山东,硕士,主要研究方向为网络安全|张学谦(1981—),男,重庆,本科,主要研究方向为网络安全、等级保护|刘全明(1973—),男,山西,副教授,博士,主要研究方向为网络行业分析与数据挖掘、云存储与云安全、物联网应用
  • 基金资助:
    国家自然科学基金(61673295);山西省国际科技合作重点研发计划(201903D421050)

Research on Captcha Recognition of Lightweight Convolutional Neural Network with Gabor

LIU Jing1, ZHANG Xueqian2, LIU Quanming3()   

  1. 1. The Third Research Institute of The Ministry of Public Security, Shanghai 200031, China
    2. Cyber Security Team of Sichuan Provincial Public Security Department, Chengdu 610000, China
    3. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China
  • Received:2020-01-15 Online:2020-07-10 Published:2020-08-13
  • Contact: Quanming LIU E-mail:liuqm@sxu.edu.cn

摘要:

验证码作为一项广泛使用的验证手段,能有效地鉴别登录用户,对网络安全的保护有着重要的意义。针对卷积神经网络参数量大,训练成本和时间较大的问题,文章提出了一种基于图像Gabor特征与卷积神经网络相结合的图像验证码识别方法,实现了验证码图像的识别和分类。使用Gabor算子提取不同方向和角度的细节特征作为卷积神经网络的输入,并改进深度可分离卷积层获得多尺度特征向量,充分提取验证码图像中的不同特征,提高了模型的识别率。实验研究表明,改进的卷积神经网络对验证码的平均识别准确率达到98%左右,具有实际意义。

关键词: 可分离卷积层, 卷积神经网络, 验证码识别, Gabor

Abstract:

As a widely used verification method, captcha effectively identifies the logged-in users, which is of great significance to the protection of network security. To solve the problem of large parameters and difficult training cost of convolutional neural network, this paper proposes an captcha recognition method based on the combination of Gabor features and convolutional neural network to realize the recognition and classification. Gabor operator is used to extract the detail features as the input of convolution neural network, and the improved depthwise separable convolutions to obtain the features at different scales and increased the model differentiation. Finally, the experimental results show that the improved convolutional neural network has a practical significance for the average recognition accuracy of the verification code of about 98%.

Key words: separable convolution layer, convolutional neural network, captcha recognition, Gabor

中图分类号: