信息网络安全 ›› 2018, Vol. 18 ›› Issue (6): 28-35.doi: 10.3969/j.issn.1671-1122.2018.06.004

• • 上一篇    下一篇

基于深度卷积神经网络的指纹活体检测算法研究

龙敏1,2, 龙啸海1(), 马莉3   

  1. 1.长沙理工大学计算机与通信工程学院,湖南长沙410114
    2.长沙理工大学综合交通运输大数据智能处理湖南省重点实验室,湖南长沙410114
    3. 69026部队,新疆乌鲁木齐 830002
  • 收稿日期:2018-01-04 出版日期:2018-06-15 发布日期:2020-05-11
  • 作者简介:

    作者简介:龙敏(1977—),女,湖南,教授,博士,主要研究方向为混沌理论及应用、无线通信及安全;龙啸海(1992—),男,湖南,硕士研究生,主要研究方向为信息安全;马莉(1971—),女,青海,工程师,本科,主要研究方向为通信、网络安全。

  • 基金资助:
    国家自然科学基金[61572182, 61370225];湖南省自然科学基金[15JJ2007]

Research on a Fingerprint Liveness Detection Algorithm Based on Deep Convolution Neural Networks

Min LONG1,2, Xiaohai LONG1(), Li MA3   

  1. 1. School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha Hunan 410114, China
    2. Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology, ChangshaHunan 410114, China
    3. Troops 69026, Urumqi Xinjiang 830002, China
  • Received:2018-01-04 Online:2018-06-15 Published:2020-05-11

摘要:

近年来,随着指纹认证系统的广泛应用,伪造指纹检测受到人们的日益关注。文章结合卷积神经网络在计算机视觉、人脸识别和图像分类领域的应用特征,提出一个指纹活体检测算法F-net。算法采用BN层、inception结构和全局均值池化层对网络进行优化,以减少F-net网络的大量参数和计算复杂度,这也使得算法在采用大学习率进行网络训练的同时获得了较高的泛化能力。文章在LivDet2011和LivDet2013数据集上进行了多种算法测试。实验结果表明,文章提出的F-net具有较高的泛化能力和实时检测性能。

关键词: 指纹活体检测, 指纹反欺骗, 卷积神经网络, inception结构

Abstract:

With the wide application of fingerprint authentication system in recent years, forged fingerprint detection has been paid more and more attentions. Based on the application characteristics of convolutional neural network in the fields of computer vision, face recognition and image classification, this paper proposes a fingerprint liveness detection algorithm called F-net. The algorithm uses BN layer, inception structure and global mean pool level to optimize the network, so as to reduce the large number of parameters in F-net network and the computational complexity. This also makes the algorithm get a higher recognition rate when the algorithm uses a large learning rate to train the network. Many algorithms are tested on LivDet2011 and LivDet2013 datasets. The experimental results show that F-net has high recognition rate and real-time detection performance.

Key words: fingerprint liveness detection, fingerprint anti-spoofing, convolution neural network, inception structure

中图分类号: