信息网络安全 ›› 2018, Vol. 18 ›› Issue (10): 78-84.doi: 10.3969/j.issn.1671-1122.2018.10.011

• 技术研究 • 上一篇    下一篇

一种防火墙规则冲突检测方法研究

陈思思1, 杨进2(), 李涛2   

  1. 1.四川大学计算机学院,四川成都610065
    2.四川大学计算机网络与安全研究所,四川成都610065
  • 收稿日期:2018-07-15 出版日期:2018-10-10 发布日期:2020-05-11
  • 作者简介:

    作者简介:陈思思(1992—),女,重庆,硕士研究生,主要研究方向为网络安全;杨进(1980—),男,四川,副研究员,博士,主要研究方向为网络安全;李涛(1965—),男,四川,教授,博士,主要研究方向为云和大数据安全、网络信息对抗与保护技术。

  • 基金资助:
    国家重点研发计划 [2016yfb0800604, 2016yfb0800605];国家自然科学基金 [61572334, U1736212]

Research on an Anomalies Detection Method for Firewall Rules

Sisi CHEN1, Jin YANG2(), Tao LI2   

  1. 1. College of Computer Science, Sichuan University, Chengdu Sichuan 610065, China
    2. Institute of Computer Networks and Information Security, Sichuan University, Chengdu Sichuan 610065, China
  • Received:2018-07-15 Online:2018-10-10 Published:2020-05-11

摘要:

防火墙是保证网络安全的重要技术之一,然而目前云环境下的防火墙,其网络流量处理通常达到万兆级。而万兆防火墙的产生,防火墙规则集的日益增大和规则间的相互冲突,严重影响了防火墙性能。主流的规则冲突检测方法主要是基于对原始规则集的检测,其方法无法实现多条规则之间的检测,且无法准确找出冲突范围。文章提出一种基于有效规则集的防火墙规则冲突检测方法,该方法对基于状态变迁的冲突检测方法进行改进,通过集合运算生成防火墙规则的有效规则集,把对原始规则集中规则的检测转变为对有效规则集中规则的检测。该方法优化检测流程,实现多条规则的冲突检测,准确找出冲突范围以提供消除方案。实验结果表明,在原始规则集存在一定冗余规则的情况下提高了检测效率。

关键词: 防火墙规则, 冲突检测, 状态变迁, 性能优化

Abstract:

Firewall is one of the core elements in network security. However, the firewall in the cloud environment, the processing for network traffic usually reaches 10 Gb. And the generation of 10 Gb firewall, the increasing of firewall rules and the anomalies of rules impair the firewall performance seriously. This paper presented a valid-rule-set based anomalies detection method for firewall rules, which improve the state-transition based anomalies discovery algorithm. According to producing valid-rule-set and altering the detection object from original-rule-set to valid-rule-set, optimize the process of detection and locate the range of the anomaly. The experiment results show that, in the presence of a certain degree of redundancy in original-rule-set, the method can enhance the effect of detection.

Key words: firewall rules, anomalies detection, state transition, performance optimiztion

中图分类号: