信息网络安全 ›› 2025, Vol. 25 ›› Issue (5): 778-793.doi: 10.3969/j.issn.1671-1122.2025.05.010

• 理论研究 • 上一篇    下一篇

不确定性网络攻击场景下的多状态因果表示与推理模型

董春玲(), 冯宇, 范永开   

  1. 中国传媒大学计算机与网络空间安全学院,北京 100024
  • 收稿日期:2024-12-30 出版日期:2025-05-10 发布日期:2025-06-10
  • 通讯作者: 董春玲 dongchunling@cuc.edu.cn
  • 作者简介:董春玲(1979—),女,山东,教授,博士,CCF会员,主要研究方向为因果推断和不确定性推理|冯宇(1999—),男,云南,硕士研究生,CCF会员,主要研究方向为因果推断和网络安全攻击防御|范永开(1978—),男,山西,教授,博士,CCF会员,主要研究方向为数据安全、内容与传播安全
  • 基金资助:
    国家自然科学基金(62176240);北京市自然科学基金(4222038)

Multi-State Causal Representation and Inference Model in Uncertain Network Attack Scenarios

DONG Chunling(), FENG Yu, FAN Yongkai   

  1. School of Computer and Cyber Sciences, Communication University of China, Beijing 100024, China
  • Received:2024-12-30 Online:2025-05-10 Published:2025-06-10

摘要:

网络安全领域当前面临的挑战之一是对网络攻击的不确定性因素进行系统分析。为应对该挑战,攻击图工具被广泛应用于网络安全领域,旨在描述攻击者行为特征与构建攻击场景。然而,当前的攻击图工具,如属性攻击图、状态攻击图以及贝叶斯攻击图等,并没有全面且综合地考虑网络攻击中存在的不确定性因素,因而无法提供一个统一的网络不确定性因素描述框架。除此之外,当前攻击图中的计算节点风险概率的相关算法时间复杂度较高,难以应用实践。为解决上述问题,文章提出多状态-动态不确定性因果攻击图(M-DUCAG)模型与基于单向因果链的节点风险概率推理(One Side-CCRP)算法,以实现网络不确定性因素的表示与推理。M-DUCAG模型能够表示节点的多个状态,能够结合告警信息更加准确地描述网络攻击过程中的不确定性因素。One Side-CCRP算法通过展开节点上游因果链,有效提高推理的效率与准确性。实验结果表明,M-DUCAG模型在应对参数扰动方面具有鲁棒性,能够有效表示网络攻击过程中的不确定性因素。与变量消除法相比,One Side-CCRP算法在有限数量告警证据下具有更高的推理效率,能够满足现实推理应用需求。

关键词: 动态不确定性因果攻击图, 概率攻击图, 不确定性因素, 漏洞

Abstract:

One of the challenges in the field of cybersecurity is to conduct a systematic analysis of the uncertainties of cyber-attacks. To solve this challenge, attack graphs are widely used in network security, aiming to describe attacker behavior characteristics and construct attack scenarios. However, current attack graph tools, such as attribute attack graphs, state attack graphs, and Bayesian attack graphs, cannot comprehensively consider the uncertainty factors in network attacks and provide a unified framework for describing network uncertainties. In addition, the time complexity of the algorithm related to calculating the risk probability of nodes in the current attack graph is relatively high, which is difficult to apply in practice. To solve the above problems, this paper proposed a multi-state Dynamic Uncertain Causality Attack Graph (M-DUCAG) model and a node risk probabilistic inference algorithm based on one-side causal chains (One Side-CCRP) to represent and inference the uncertainty factors of the network. The M-DUCAG could represent multiple states of nodes and describe the uncertainties in the process of network attacks based on alarm information. The One Side-CCRP algorithm effectively improved the efficiency and accuracy of inference by expanding the upstream causal chains of the node. Experiments show that the M-DUCAG model is robust in dealing with parameter disturbances and can effectively represent the uncertainties in the process of network attacks. Compared with the variable elimination method, the One Side-CCRP algorithm has higher inference efficiency under limited number alarm evidence, which can satisfy the needs of real-world inference applications.

Key words: dynamic uncertain causality attack graph, probability attack graph, uncertainty factors, vulnerability

中图分类号: