信息网络安全 ›› 2023, Vol. 23 ›› Issue (9): 85-94.doi: 10.3969/j.issn.1671-1122.2023.09.008
收稿日期:
2023-06-25
出版日期:
2023-09-10
发布日期:
2023-09-18
通讯作者:
周纯杰
E-mail:cjiezhou@hust.edu.cn
作者简介:
浦珺妍(1999—),女,江苏,硕士研究生,主要研究方向为工控系统安全|李亚辉(1992—),男,河南,博士研究生,CCF会员,主要研究方向为工控系统安全、知识图谱|周纯杰(1965—),男,湖北,教授,博士,主要研究方向为网络化控制系统、工控系统安全
基金资助:
PU Junyan, LI Yahui, ZHOU Chunjie()
Received:
2023-06-25
Online:
2023-09-10
Published:
2023-09-18
Contact:
ZHOU Chunjie
E-mail:cjiezhou@hust.edu.cn
摘要:
安全风险分析是保障工控系统长周期安全稳定运行的基础,信息物理紧耦合的特点增加了工控系统安全风险的复杂性。针对大规模复杂异构工控系统潜在安全风险精准跨域动态分析评估问题,文章提出一种基于概率攻击图的工控系统跨域动态安全风险分析方法。首先基于知识图谱技术将设备、漏洞和拓扑结构等安全元数据进行语义关联,并通过跨域攻击图生成算法完成跨域攻击图的自动生成;然后基于跨域攻击图将漏洞基本属性和威胁时变特点纳入风险传播概率计算,实现对工控系统跨域动态安全风险的定量分析。实验结果表明,该方法实现了对工控系统的自动化跨域动态安全风险分析,且双层攻击图的表现形式有效提升了安全分析人员对复杂系统分析的便捷性。
中图分类号:
浦珺妍, 李亚辉, 周纯杰. 基于概率攻击图的工控系统跨域动态安全风险分析方法[J]. 信息网络安全, 2023, 23(9): 85-94.
PU Junyan, LI Yahui, ZHOU Chunjie. Cross-Domain Dynamic Security Risk Analysis Method of Industrial Control System Based on Probabilistic Attack Graph[J]. Netinfo Security, 2023, 23(9): 85-94.
表4
信息设备的配置信息
区域 | 子区域 | 设备名称 | 功能描述 | 漏洞信息 |
---|---|---|---|---|
控制网 | 横河 CS-3000 DCS | FCS1、FCS2、FCS3 | 现场总线控制系统 | CVE-2022-33939 |
OPC服务器 | 采集工厂的实时数据 | CVE-2014-5426 | ||
操作员站 | 监视工厂运行情况 | CVE-2022-24287等 | ||
工程师站 | 监视运行情况,发送控制指令 | CVE-2018-8838等 | ||
数采网 | — | PHD服务器 | 主服务器,集中处理和存储来自各装置和各系统的数据 | CVE-2016-2280等 |
APC服务器 | 先进过程控制 | 没有漏洞 | ||
信息网 | — | PE用户 | 通过浏览器了解现场运行情况 | CVE-2018-0851等 |
MES客户端 | 数据访问客户端 | CVE-2023-24892等 | ||
Web服务器 | 提供网页服务 | CVE-2023-25690等 | ||
MES服务器 | 工厂信息管理 | CVE-2009-1996等 |
[1] |
LI Jiarui, LING Xiaobo, LI Chenxi, et al. Dynamic Network Security Analysis Based on Bayesian Attack Graphs[J]. Computer Science, 2022, 49(3): 62-69.
doi: 10.11896/jsjkx.210800107 |
李嘉睿, 凌晓波, 李晨曦, 等. 基于贝叶斯攻击图的动态网络安全分析[J]. 计算机科学, 2022, 49(3):62-69.
doi: 10.11896/jsjkx.210800107 |
|
[2] | FREI S, MAY M, FIEDLER U, et al. Large-Scale Vulnerability Analysis[C]// ACM. 2006 SIGCOMM Workshop on Large-Scale Attack Defense. New York: ACM, 2006: 131-138. |
[3] | FRANQUEIRA V N L, VAN KEULEN M. Analysis of the NIST Database Towards the Composition of Vulnerabilities in Attack Scenarios[R]. Holland: University of Twente, TR-CTIT-08-08, 2008. |
[4] | GREEN B, KROTOFIL M, ABBASI A. On the Significance of Process Comprehension for Conducting Targeted ICS Attacks[C]// ACM. 2017 Workshop on Cyber-Physical Systems Security and Privacy. New York: ACM, 2017: 57-67. |
[5] | ZHANG Kai, LIU Jingju. A Threat Path Generation Method Based on Knowledge Graph[J]. Computer Simulation, 2022, 39(4): 350-356. |
张凯, 刘京菊. 一种基于知识图谱的威胁路径生成方法[J]. 计算机仿真, 2022, 39(4):350-356. | |
[6] | OU Xinming, GOVINDAVAJHALA S, APPEL A W. MulVAL: A Logic-Based Network Security Analyzer[C]// USENIX. 14th USENIX Security Symposium. Berkley: USENIX, 2005: 113-128. |
[7] | INOKUCHI M, OHTA Y, KINOSHITA S, et al. Design Procedure of Knowledge Base for Practical Attack Graph Generation[C]// ACM. 2019 ACM Asia Conference on Computer and Communications Security. New York: ACM, 2019: 594-601. |
[8] | YUAN Bintao, PAN Zulie, SHI Fan, et al. An Attack Path Generation Methods Based on Graph Database[C]// IEEE. 4th Information Technology, Networking, Electronic and Automation Control Conference(ITNEC). New York: IEEE, 2020: 1905-1910. |
[9] | CHEN Ruiying, CHEN Zemao, WANG Hao. Research on Threat Modeling of Industrial Control Network Based on Attack Graph[J]. Netinfo Security, 2018, 18(10): 70-77. |
陈瑞滢, 陈泽茂, 王浩. 基于攻击图的工控网络威胁建模研究[J]. 信息网络安全, 2018, 18(10):70-77. | |
[10] | WANG Jinfang, GUO Yuanbo. Distributed Attack Graph Generation Algorithm for Cyber-Physical Systems[EB/OL]. (2023-02-16)[2023-05-10]. http://kns.cnki.net/kcms/detail/21.1106.tp.20230215.1420.010.html. |
王金芳, 郭渊博. 面向物理信息系统的分布式攻击图生成算法[EB/OL]. (2023-02-16)[2023-05-10]. https://kns.cnki.net/kcms/detail//21.1106.tp.20230215.1420.010.html. | |
[11] | FENG Yanli. Design and Implementation of Attack Graph Generation System for Industrial Control System[D]. Harbin: Harbin Institute of Technology, 2020. |
冯艳丽. 面向工业控制系统的攻击图生成系统设计与实现[D]. 哈尔滨: 哈尔滨工业大学, 2020. | |
[12] | WANG Shuo, WANG Jianhua, TANG Guangming, et al. Intelligent and Efficient Method for Optimal Penetration Path Generation[J]. Journal of Computer Research and Development, 2019, 56(5): 929-941. |
王硕, 王建华, 汤光明, 等. 一种智能高效的最优渗透路径生成方法[J]. 计算机研究与发展, 2019, 56(5):929-941. | |
[13] |
YE Ziwei, GUO Yuanbo, LI Tao, et al. Extended Attack Graph Generation Method Based on Knowledge Graph[J]. Computer Science, 2019, 46(12): 165-173.
doi: 10.11896/jsjkx.190400092 |
叶子维, 郭渊博, 李涛, 等. 一种基于知识图谱的扩展攻击图生成方法[J]. 计算机科学, 2019, 46(12):165-173.
doi: 10.11896/jsjkx.190400092 |
|
[14] | HUANG Jiahui, FENG Dongqin, WANG Hongjian. A Method for Quantifying Vulnerability of Industrial Control System Based on Attack Graph[J]. Acta Automatica Sinica, 2016, 42(5): 792-798. |
黄家辉, 冯冬芹, 王虹鉴. 基于攻击图的工控系统脆弱性量化方法[J]. 自动化学报, 2016, 42(5):792-798. | |
[15] | ZHANG Chunjie. Research on Information Security Risk Assessment Technology of Industrial Control System Based on Game Theory[D]. Changchun: Changchun University of Technology, 2021. |
张春杰. 基于博弈理论的工控系统信息安全风险评估技术研究[D]. 长春: 长春工业大学, 2021. | |
[16] | MARIKO F, WATARU M, TAKUHO M, et al. Efficient Industrial Control Systems Risk Assessment Using the Attack Path to the Critical Device[C]// ACM. 3rd International Conference on Management Science and Industrial Engineering. New York: ACM, 2021: 104-110. |
[17] |
POOLSAPPASIT N, DEWRI R, RAY I. Dynamic Security Risk Management Using Bayesian Attack Graphs[J]. IEEE Transactions on Dependable and Secure Computing, 2012, 9(1): 61-74.
doi: 10.1109/TDSC.2011.34 URL |
[18] | Forum of Incident Response and Security Teams. Common Vulnerability Scoring System[EB/OL]. [2023-04-25]. https://www.first.org/cvss/v3.1/specification-document. |
[19] | GAO Ni, GAO Ling, HE Yiyue, et al. Dynamic Security Risk Assessment Model Based on Bayesian Attack Graph[J]. Journal of Sichuan University: Engineering Science Edition, 2016, 48(1): 111-118. |
高妮, 高岭, 贺毅岳, 等. 基于贝叶斯攻击图的动态安全风险评估模型[J]. 四川大学学报(工程科学版), 2016, 48(1):111-118. | |
[20] | LI Huan. Research on Dynamic Risk Assessment Method Based on Bayesian Network Attack Diagram[D]. Qinhuangdao: Yanshan University, 2019. |
李欢. 基于贝叶斯网络攻击图的动态风险评估方法研究[D]. 秦皇岛: 燕山大学, 2019. | |
[21] | KUPPA A, AOUAD L, LE-KHAC N A. Linking CVE’s to MITRE ATT & CK Techniques[C]// ACM. 16th International Conference on Availability, Reliability and Security(ARES). New York: ACM, 2021: 1-12. |
[22] | National Institute of Standards and Technology. National Vulnerability Database[EB/OL]. [2023-05-25]. http://www.nvd.nist.gov. |
[23] | National Institute of Standards and Technology. Common Platform Enumeration[EB/OL]. [2023-05-25]. https://nvd.nist.gov/products/cpe. |
[24] | AKSU M U, BICAKCI K, DILEK M H, et al. Automated Generation of Attack Graphs Using NVD[C]// ACM. 8th ACM Conference on Data and Application Security and Privacy. New York: ACM, 2018: 135-142. |
[25] | YADAV G, PAUL K, ALLAKANY A, et al. IoT-PEN: A Penetration Testing Framework for IoT[C]// IEEE. 2020 International Conference on Information Networking(ICOIN). New York: IEEE, 2020: 196-201. |
[26] | XIE Anming, CAI Zhuhua, TANG Cong, et al. Evaluating Network Security with Twolayer Attack Graphs[C]// IEEE. 2009 Annual Computer Security Applications Conference. New York: IEEE, 2009: 127-136. |
[1] | 王晓狄, 黄诚, 刘嘉勇. 面向网络安全开源情报的知识图谱研究综述[J]. 信息网络安全, 2023, 23(6): 11-21. |
[2] | 王华忠, 田子蕾. 基于改进CGAN算法的工控系统入侵检测方法[J]. 信息网络安全, 2023, 23(1): 36-43. |
[3] | 李佳玮, 吴克河, 张波. 基于高斯混合聚类的电力工控系统异常检测研究[J]. 信息网络安全, 2021, 21(3): 53-63. |
[4] | 王华忠, 程奇. 基于改进鲸鱼算法的工控系统入侵检测研究[J]. 信息网络安全, 2021, 21(2): 53-60. |
[5] | 朱朝阳, 周亮, 朱亚运, 林晴雯. 基于行为图谱筛的恶意代码可视化分类算法[J]. 信息网络安全, 2021, 21(10): 54-62. |
[6] | 刘红, 谢永恒, 王国威, 蒋帅. 基于跨领域本体的信息安全分析[J]. 信息网络安全, 2020, 20(9): 82-86. |
[7] | 陶源, 黄涛, 李末岩, 胡巍. 基于知识图谱驱动的网络安全等级保护日志审计分析模型研究[J]. 信息网络安全, 2020, 20(1): 46-51. |
[8] | 高孟茹, 谢方军, 董红琴, 林祥. 面向关键信息基础设施的网络安全评价体系研究[J]. 信息网络安全, 2019, 19(9): 111-114. |
[9] | 王坤. 浅谈工控系统的安全威胁及防护体系建立[J]. , 2013, 13(Z): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||