[1] |
PENG Baolin, ZHU Chenguang, LI Chunyuan, et al. Few-Shot Natural Language Generation for Task-Oriented Dialog[C]// ACL. Findings of the Association for Computational Linguistics:EMNLP. Stroudsburg: ACL, 2020: 172-182.
|
[2] |
IAN J G, JEAN P A, MEHDI M, et al. Generative Adversarial Networks[C]// ACM. NIPS:Neural Information Processing Systems Conference. New York: ACM, 2014: 2672-2680.
|
[3] |
LIU Wenfu. Research on the Key Techniques of Short Text Representation and Classification Based on Mixed Semantic Learning[D]. Zhengzhou: PLA Information Engineering University, 2022.
|
|
刘文甫. 基于混合语义学习的短文本表示与分类关键技术研究[D]. 郑州: 解放军信息工程大学, 2022.
|
[4] |
TOMAS M, KAI C, GREG C, et al. Efficient Estimation of Word Representations in Vector Space[EB/OL]. (2013-09-07) [2023-06-01]. https://arxiv.org/abs/1301.3781.
|
[5] |
ZHANG Li, ZOU Kaihong, ZONG Xu, et al. Text Feature Extraction Based on Deep Convolutional Neural Networks: China, CN201810379548. X[P]. 2018-09-28.
|
|
张黎, 邹开红, 宗旭, 等. 基于深度卷积神经网络进行文本特征提取的方法:中国,CN201810379548. X[P]. 2018-09-28.
|
[6] |
ZHAO Qinlu, CAI Xiaodong, LI Bo, et al. Text Feature Extraction Method Based on LSTM-Attention Neural Networks[J]. Modern Electronic Technology, 2018, 41(8): 167-170.
|
|
赵勤鲁, 蔡晓东, 李波, 等. 基于LSTM-Attention神经网络的文本特征提取方法[J]. 现代电子技术, 2018, 41(8): 167-170.
|
[7] |
REITER E, DALE R, FENG Z. Building Natural Language Generation Systems[M]. Cambridge: Cambridge University Press, 2000.
|
[8] |
WAN Xiaojun, FENG Yansong, SUN Weiwei. Research Progress and Trend of Text Automatic Generation[C]// CCF. CCF 2014-2015 China Computer Science and Technology Development Report. Beijing: CCF, 2015: 298-323.
|
|
万小军, 冯岩松, 孙薇薇. 文本自动生成研究进展与趋势[C]// CCF. CCF 2014-2015中国计算机科学技术发展报告会. 北京: CCF, 2015:298-323.
|
[9] |
HU Baotian. Text Representation Based on Deep Neural Networks and Its Application[D]. Harbin: Harbin Institute of Technology, 2016.
|
|
户保田. 基于深度神经网络的文本表示及其应用[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
[10] |
LI Tong. Research on Natural Language Generation Algorithm Based on Transformer[D]. Xi’ an: Xidian University, 2022.
|
|
李彤. 基于Transformer的自然语言生成算法研究[D]. 西安: 西安电子科技大学, 2022.
|
[11] |
YU Lantao, ZHANG Weinan, WANG Jun, et al. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient[C]// AAAI. AAAI Conference on Artificial Intelligence. New York: AAAI, 2017: 2852-2858.
|
[12] |
CHEN Xuesong, YANG Yimin. Review on Reinforcement Learning[J]. Application Research of Computers, 2010, 27(8): 2834-2838, 2844.
|
|
陈学松, 杨宜民. 强化学习研究综述[J]. 计算机应用研究, 2010, 27(8): 2834-2838,2844.
|
[13] |
KIM Y. Convolutional Neural Networks for Sentence Classification. Association for Computational Linguistics[C]// ACL. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: ACL, 2014: 1746-1751.
|
[14] |
HU Mianning, LI Xin, LI Mingfeng, et al. Research on Multi-Strategy Data Enhancement Technology for Fraud Short Message Identification[J]. Netinfo Security, 2022, 22(10): 121-128.
|
|
胡勉宁, 李欣, 李明锋, 等. 面向诈骗短信息识别的融合多策略数据增强技术研究[J]. 信息网络安全, 2022, 22(10): 121-128.
|
[15] |
GU Zhaojun, LIU Tingting, GAO Bing, et al. Anomaly Detection of Imbalanced Data in Industrial Control System Based on GAN-Cross[J]. Netinfo Security, 2022, 22(8): 81-89.
|
|
顾兆军, 刘婷婷, 高冰, 等. 基于GAN-Cross的工控系统类不平衡数据异常检测[J]. 信息网络安全, 2022, 22(8): 81-89.
|