| [1] |
FENG Dengguo, ZHANG Min, LI Hao. Big Data Security and Privacy Protection[J]. Chinese Journal of Computers, 2014, 37(1): 246-258.
|
|
冯登国, 张敏, 李昊. 大数据安全与隐私保护[J]. 计算机学报, 2014, 37(1): 246-258.
|
| [2] |
TANG Chunming, LIN Xuhui. Protocol of Privacy-Preserving Set Intersection Computation[J]. Netinfo Security, 2020, 20(1): 9-15.
|
|
唐春明, 林旭慧. 隐私保护集合交集计算协议[J]. 信息网络安全, 2020, 20(1): 9-15.
|
| [3] |
FENG Dengguo, YANG Kang. Concretely Efficient Secure Multi-Party Computation Protocols: Survey and More[EB/OL]. (2022-06-14)[2025-06-02]. https://doaj.org/article/5cca8bd884a04430a75a15f52e2edd5c.
|
| [4] |
AGRAWAL N, SHAHIN S A, KUSNER M J, et al. QUOTIENT: Two-Party Secure Neural Network Training and Prediction[C]// ACM. 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 1231-1247.
|
| [5] |
GARG S, JAIN A, MUKHERJEE P, et al. Scalable Multiparty Computation from Non-Linear Secret Sharing[C]// Springer. CRYPTO 2024. Heidelberg: Springer, 2024: 384-417.
|
| [6] |
YAO A C. Protocols for Secure Computations[C]// IEEE. 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982). New York: IEEE, 1982: 160-164.
|
| [7] |
YAO A C. How to Generate and Exchange Secrets[C]// IEEE. 27th Annual Symposium on Foundations of Computer Science (SFCS 1986). New York: IEEE, 1986: 162-167.
|
| [8] |
EVANS D, KOLESNIKOV V, ROSULEK M. A Pragmatic Introduction to Secure Multi-Party Computation[M]. Boston: Now Foundations and Trends, 2018.
|
| [9] |
CHOI J I, BUTLER K R B. Secure Multiparty Computation and Trusted Hardware: Examining Adoption Challenges and Opportunities[J]. Security and Communication Networks, 2019, 64(5): 18-21.
|
| [10] |
SABT M, ACHEMLAL M, BOUABDALLAH A. Trusted Execution Environment: What It is, and What It is Not[C]// IEEE. 2015 IEEE Trustcom/BigDataSE/ISPA. New York: IEEE, 2015: 57-64.
|
| [11] |
KÜÇÜK K A, PAVERD A, MARTIN A, et al. Exploring the Use of Intel SGX for Secure Many-Party Applications[C]// ACM. The 1st Workshop on System Software for Trusted Execution. New York: ACM, 2016: 1-6.
|
| [12] |
ANATI I, GUERON S, JOHNSON S, et al. Innovative Technology for CPU Based Attestation and Sealing[C]// ACM. 2nd International Workshop on Hardware and Architectural Support for Security and Privacy. New York: ACM, 2013: 1-7.
|
| [13] |
PASS R, SHI E, TRAMÈR F. Formal Abstractions for Attested Execution Secure Processors[C]// Springer. EUROCRYPT 2017. Heidelberg: Springer, 2017: 260-289.
|
| [14] |
CANETTI R. Universally Composable Security: A New Paradigm for Cryptographic Protocols[C]// IEEE. The 42nd IEEE Symposium on Foundations of Computer Science. New York: IEEE, 2001: 136-145.
|
| [15] |
CHOUDHURI A R, GREEN M, JAIN A, et al. Fairness in an Unfair World: Fair Multiparty Computation from Public Bulletin Boards[C]// ACM. 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 719-728.
|
| [16] |
GARFINKEL T, PFAFF B, CHOW J, et al. Terra: A Virtual Machine-Based Platform for Trusted Computing[C]// ACM. The Nineteenth ACM Symposium on Operating Systems Principles. New York: ACM, 2003: 193-206.
|
| [17] |
VASUDEVAN A, OWUSU E, ZHOU Zongwei, et al. Trustworthy Execution on Mobile Devices: What Security Properties Can My Mobile Platform Give Me[C]// Springer. Trust and Trustworthy Computing. Heidelberg: Springer, 2012: 159-178.
|
| [18] |
GlobalPlatform. TEE System Architecture[EB/OL]. (2022-05-16)[2025-06-02]. https://globalplatform.org/wp-content/uploads/2022/05/GPD_SPE_009-GPD_TEE_SystemArchitecture_v1.3_PublicRelease_signed.pdf.
|
| [19] |
LI Xiaoguo, ZHAO Bowen, YANG Guomin, et al. A Survey of Secure Computation Using Trusted Execution Environments[EB/OL]. (2023-02-23)[2025-06-02]. https://doi.org/10.48550/arXiv.2302.12150.
|
| [20] |
ARBAUGH W A, FARBER D J, SMITH J M. A Secure and Reliable Bootstrap Architecture[C]// IEEE. 1997 IEEE Symposium on Security and Privacy. New York: IEEE, 1997: 65-71.
|
| [21] |
BARTUSEK J, BERGAMASCHI T, KHOURY S, et al. On the Communication Complexity of Secure Multi-Party Computation with Aborts[C]// ACM. The 43rd ACM Symposium on Principles of Distributed Computing. New York: ACM, 2024: 480-491.
|
| [22] |
NOAH A, OKUNOLA A. A Comparative Analysis of Homomorphic Encryption and Secure Multi-Party Computation for Preserving Data Privacy in Cloud-Based Financial Services Authors[EB/OL]. (2025-05-28)[2025-06-02]. https://www.researchgate.net/publication/392165415_A_Comparative_Analysis_of_Homomorphic_Encryption_and_Secure_Multi-Party_Computation_for_Preserving_Data_Privacy_in_Cloud-Based_Financial_Services.
|