Netinfo Security ›› 2025, Vol. 25 ›› Issue (9): 1418-1438.doi: 10.3969/j.issn.1671-1122.2025.09.010
Previous Articles Next Articles
CHEN Xianyi1,2,3,4, WANG Xuebo2,3, CUI Qi1,2,3, FU Zhangjie1,2,3, WANG Qianqian2,3, ZENG Yifu5,6(
)
Received:2025-06-13
Online:2025-09-10
Published:2025-09-18
CLC Number:
CHEN Xianyi, WANG Xuebo, CUI Qi, FU Zhangjie, WANG Qianqian, ZENG Yifu. Overview of Backdoor Attacks and Defenses in Personalized Federated Learning[J]. Netinfo Security, 2025, 25(9): 1418-1438.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.09.010
| 名称 | 攻击类型 | 年份 | 数据分布 | 攻击类型 | 攻击适应性 | 应用 场景 | |||
|---|---|---|---|---|---|---|---|---|---|
| 黑盒攻击 | 白盒攻击 | 持续攻击 | 共谋攻击 | 完整模型共享的PFL | 部分模型共享的PFL | ||||
| PFedBA[ | × | √ | 2024 | Non-IID | √ | √ | √ | √ | 图像分类、贷款预测 |
| DBA[ | √ | × | 2020 | Non-IID | × | √ | √ | × | 图像分类 |
| CoBA[ | × | √ | 2024 | Non-IID | × | √ | √ | × | 图像分类、贷款预测 |
| 模型替换攻击[ | × | √ | 2020 | Non-IID | × | × | √ | × | 图像分类 |
| Edge[ | √ | √ | 2020 | Non-IID | √ | × | √ | × | 图像分类、单词分类、情感分析 |
| BadSFL[ | √ | × | 2024 | Non-IID | √ | × | √ | × | 图像分类 |
| FCBA[ | √ | √ | 2024 | Non-IID | × | √ | √ | × | 图像分类 |
| LFA[ | × | √ | 2024 | Non-IID | √ | √ | √ | × | 图像分类 |
| Neurotoxin[ | × | √ | 2022 | IID/Non-IID | √ | × | √ | × | 图像分类、单词分类 |
| BapFL[ | × | √ | 2024 | Non-IID | √ | × | √ | √ | 图像分类 |
| Bad-PFL[ | × | √ | 2025 | Non-IID | √ | √ | √ | √ | 图像分类 |
| PoisonGAN[ | √ | × | 2020 | IID | √ | √ | √ | × | 图像分类 |
| Mostly[ | √ | × | 2022 | IID/Non-IID | √ | × | √ | × | 图像分类 |
| Federated- Reverse[ | √ | × | 2021 | IID/Non-IID | √ | × | √ | × | 图像分类 |
| RLBFL[ | × | √ | 2023 | IID | √ | √ | √ | × | 图像分类 |
| 3DFed[ | × | √ | 2023 | Non-IID | √ | √ | √ | × | 图像分类 |
| A3FL[ | × | √ | 2023 | Non-IID | √ | √ | √ | × | 图像分类 |
| IBA[ | × | √ | 2023 | Non-IID | √ | × | √ | × | 图像分类 |
| 防御 阶段 | 名称 | 年份 | 防御策略 | 兼容安全聚合 | 防御位置 | PFL加剧 | 应用场景 | |
|---|---|---|---|---|---|---|---|---|
| 客户端 | 服务器 | |||||||
| 本地训练阶段 | 文献[ 方案 | 2021 | 中毒数据过滤 | √ | √ | × | √ | 图像分类 |
| PFL-ALB[ | 2025 | 分层聚合、个性化分层 | × | √ | √ | √ | 图像分类 | |
| FedNor[ | 2024 | 个性化训练、统计异常检测 | × | √ | √ | √ | 图像分类 | |
| PR-PFL[ | 2024 | 差分隐私、鲁棒聚合、个性化训练 | × | √ | √ | √ | 图像分类 | |
| BDPFL[ | 2025 | 层次化蒸馏、个性化训练 | √ | √ | × | √ | 图像分类 | |
| FedPD[ | 2024 | 交换原型模型 | × | √ | × | √ | 图像分类 | |
| pFedSAM[ | 2024 | 个性化训练 | √ | √ | × | √ | 图像分类 | |
| SARS[ | 2024 | 个性化训练 | √ | √ | × | √ | 图像分类 | |
| 聚合前防御 | FLAME[ | 2022 | 模型聚类、权重衰减、差分隐私 | × | √ | √ | √ | 图像分类、单词预测 |
| 文献[ 方案 | 2019 | 差分隐私 | × | √ | × | √ | 图像分类 | |
| 文献[ 方案 | 2020 | 降维 | × | × | √ | √ | 图像分类、情感分析 | |
| 文献[ 方案 | 2021 | 降维 | × | × | √ | √ | 图像分类 | |
| 聚合阶段防御 | 文献[ 方案 | 2021 | 模型相似度 | × | × | √ | √ | 图像分类、情感分类 |
| FL-PLAS[ | 2018 | 个性化层特性 | × | √ | √ | √ | 图像分类 | |
| 文献[ 方案 | 2023 | 统计方法 | × | × | √ | √ | 图像分类 | |
| 聚合后防御 | FedEraser[ | 2021 | 遗忘学习 | × | × | √ | √ | 图像分类、单词预测 |
| 文献[ 方案 | 2022 | 遗忘学习 | × | × | √ | √ | 图像分类 | |
| Baffle[ | 2021 | 联合测试 | √ | × | √ | √ | 图像分类 | |
| 防御方法 | 攻击方法 | SCAFFOLD[ | PFEDME[ | Ditto[ | FedRep[ | FedALA[ |
|---|---|---|---|---|---|---|
| FLAME[ | Neurotoxin[ | 90.1/8.7 | 98.5/10.4 | 91.3/10.6 | 88.2/13.2 | 89.4/37.0 |
| CerP[ | 91.4/32.9 | 98.5/10.7 | 91.9/9.3 | 87.7/15.9 | 89.0/19.8 | |
| PFedBA [ | 89.2/92.1 | 89.4/98.8 | 91.5/95.9 | 88.7/87.0 | 89.3/99.7 | |
| MKrum[ | Neurotoxin[ | 91.5/9.0 | 90.0/10.4 | 91.9/10.7 | 88.6/11.1 | 89.5/8.8 |
| CerP[ | 92.3/42.5 | 90.0/10.7 | 92.1/9.6 | 88.9/22.7 | 89.6/9.3 | |
| PFedBA [ | 91.3/97.4 | 89.8/99.3 | 91.7/97.4 | 89.1/91.9 | 89.3/99.9 | |
| Trim[ | Neurotoxin[ | 91.3/20.5 | 89.8/11.8 | 91.7/17.0 | 89.0/11.0 | 89.6/27.5 |
| CerP[ | 92.3/48.8 | 89.9/14.0 | 92.0/27.7 | 89.1/18.8 | 89.6/39.4 | |
| PFedBA [ | 91.4/97.1 | 89.7/98.5 | 91.7/95.6 | 89.3/88.8 | 89.7/99.5 | |
| DnC[ | Neurotoxin[ | 91.4/25.9 | 90.0/11.7 | 91.9/20.4 | 88.9/12.0 | 89.3/34.7 |
| CerP[ | 92.2/57.4 | 89.9/13.8 | 92.1/34.0 | 89.2/35.8 | 89.4/47.2 | |
| PFedBA [ | 91.5/97.3 | 89.9/97.9 | 91.9/96.7 | 88.6/91.5 | 89.3/99.8 |
| [1] | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// PMLR. Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273-1282. |
| [2] | QIAO Cheng, ZENG Yanqing, LU Hui, et al. An Efficient Incentive Mechanism for Federated Learning in Vehicular Networks[J]. IEEE Network, 2023, 38(5): 189-195. |
| [3] | ZHAO J, BAGCHI S, AVESTIMEHR S, et al. The Federation Strikes Back: A Survey of Federated Learning Privacy Attacks, Defenses, Applications, and Policy Landscape[J]. ACM Computing Surveys, 2025, 57(9): 1-37. |
| [4] | LIU Yang, HUANG Anbu, LUO Yun, et al. Fedvision: An Online Visual Object Detection Platform Powered by Federated Learning[C]// AAAI. The AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 13172-13179. |
| [5] | WANG Qingyong, ZHOU Yun. FedSPL: Federated Self-Paced Learning for Privacy-Preserving Disease Diagnosis[EB/OL]. (2021-12-07)[2025-06-10]. https://doi.org/10.1093/bib/bbab498. |
| [6] | XU An, LI Wenqi, GUO Pengfei, et al. Closing the Generalization Gap of Cross-Silo Federated Medical Image Segmentation[C]// IEEE. The IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2022: 20866-20875. |
| [7] | WAHAB O A, RJOUB G, BENTAHAR J, et al. Federated against the Cold: A Trust-Based Federated Learning Approach to Counter the Cold Start Problem in Recommendation Systems[J]. Information Sciences, 2022, 601: 189-206. |
| [8] | WAN Yichen, QU Youyang, NI Wei, et al. Data and Model Poisoning Backdoor Attacks on Wireless Federated Learning, and the Defense Mechanisms: A Comprehensive Survey[J]. IEEE Communications Surveys & Tutorials, 2024, 26(3): 1861-1897. |
| [9] | QIN Zeyu, YAO Liuyi, CHEN Daoyuan, et al. Revisiting Personalized Federated Learning: Robustness against Backdoor Attacks[C]// ACM. The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 4743-4755. |
| [10] | WANG Kangkang, MATHEWS R, KIDDON C, et al. Federated Evaluation of On-Device Personalization[EB/OL]. (2019-10-22)[2025-06-10]. https://doi.org/10.48550/arXiv.1910.10252. |
| [11] | YANG Chen, WANG Yingchao, LAN Shulin, et al. Cloud-Edge-Device Collaboration Mechanisms of Deep Learning Models for Smart Robots in Mass Personalization[EB/OL]. (2022-03-28)[2025-06-10]. https://doi.org/10.1016/j.rcim.2022.102351. |
| [12] | SHEN Tao, LI Zexi, ZHAO Ziyu, et al. An Adaptive Aggregation Method for Federated Learning via Meta Controller[EB/OL]. (2024-12-26)[2025-06-10]. https://doi.org/10.1145/3700410.3702124. |
| [13] | FALLAH A, MOKHTARI A, OZDAGLAR A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach[J]. Advances in Neural Information Processing Systems, 2020, 33: 3557-3568. |
| [14] | LI Tian, HU Shengyuan, BEIRAMI A, et al. Ditto: Fair and Robust Federated Learning through Personalization[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2021: 6357-6368. |
| [15] | DINH C T, TRAN N H, NGUYEN J D. Personalized Federated Learning with Moreau Envelopes[J]. Advances in Neural Information Processing Systems, 2020, 33: 21394-21405. |
| [16] | COLLINS L, HASSANI H, MOKHTARI A, et al. Exploiting Shared Representations for Personalized Federated Learning[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2021: 2089-2099. |
| [17] | ARIVAZHAGAN M G, AGGARWAL V, SINGH A K, et al. Federated Learning with Personalization Layers[EB/OL]. (2019-12-02)[2025-06-10]. https://doi.org/10.48550/arXiv.1912.00818. |
| [18] | LI Xiaoxiao, JIANG Meirui, ZHANG Xiaofei, et al. Fedbn: Federated Learning on Non-IId Features via Local Batch Normalization[EB/OL]. (2021-05-11)[2025-06-10]. https://doi.org/10.48550/arXiv.2102.07623. |
| [19] | YANG Zhiqin, ZHANG Yonggang, ZHENG Yu, et al. Fedfed: Feature Distillation against Data Heterogeneity in Federated Learning[J]. Advances in Neural Information Processing Systems, 2023, 36: 60397-60428. |
| [20] | LYU Yangzixing, SHI Wei, ZHANG Weiyong, et al. Do Not Trust the Clouds Easily: The Insecurity of Content Security Policy Based on Object Storage[J]. IEEE Internet of Things Journal, 2023, 10(12): 10462-10470. |
| [21] | LU Hui, JIN Chengjie, HELU Xiaohan, et al. DeepAutoD: Research on Distributed Machine Learning Oriented Scalable Mobile Communication Security Unpacking System[J]. IEEE Transactions on Network Science and Engineering, 2021, 9(4): 2052-2065. |
| [22] | LYU Xiaoting, HAN Yufei, WANG Wei, et al. Lurking in the Shadows: Unveiling Stealthy Backdoor Attacks against Personalized Federated Learning[C]// USENIX. 33rd USENIX Security Symposium. Berkeley: USENIX, 2024: 4157-4174. |
| [23] |
GU Tianyu, LIU Kang, DOLAN-GAVITT B, et al. BadNets: Evaluating Backdooring Attacks on Deep Neural Networks[J]. IEEE Access, 2019, 7: 47230-47244.
doi: 10.1109/ACCESS.2019.2909068 |
| [24] | GU Zhaoquan, HU Weixiong, ZHANG Chuanjing, et al. Gradient Shielding: Towards Understanding Vulnerability of Deep Neural Networks[J]. IEEE Transactions on Network Science and Engineering, 2020, 8(2): 921-932. |
| [25] | SABAH F, CHEN Yuwen, YANG Zhen, et al. Model Optimization Techniques in Personalized Federated Learning: A Survey[EB/OL]. (2024-06-01)[2025-06-10]. https://doi.org/10.1016/j.eswa.2023.122874. |
| [26] | RODRÍGUEZ-BARROSO N, MARTÍNEZ-CÁMARA E, LUZÓN M V, et al. Backdoor Attacks-Resilient Aggregation Based on Robust Filtering of Outliers in Federated Learning for Image Classification[EB/OL]. (2022-04-07)[2025-06-10]. https://doi.org/10.1016/j.knosys.2022.108588. |
| [27] | NGUYEN T D, RIEGER P, DE V R, et al. FLAME: Taming Backdoors in Federated Learning[C]// USENIX. 31st USENIX Security Symposium. Berkeley: USENIX, 2022: 1415-1432. |
| [28] | HOU Boyu, GAO Jiqiang, GUO Xiaojie, et al. Mitigating the Backdoor Attack by Federated Filters for Industrial IoT Applications[J]. IEEE Transactions on Industrial Informatics, 2021, 18(5): 3562-3571. |
| [29] | KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2020: 5132-5143. |
| [30] | SCHWARZSCHILD A, GOLDBLUM M, GUPTA A, et al. Just How Toxic Is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2021: 9389-9398. |
| [31] | YERLIKAYA F A, BAHTIYAR Ş. Data Poisoning Attacks against Machine Learning Algorithms[EB/OL]. (2022-12-01)[2025-06-10]. https://doi.org/10.1016/j.eswa.2022.118101. |
| [32] | XIE Chulin, HUANG Keli, CHEN P, et al. DBA: Distributed Backdoor Attacks against Federated Learning[EB/OL]. (2020-04-26)[2025-06-10]. https://research.ibm.com/publications/dba-distributed-backdoor-attacks-against-federated-learning. |
| [33] | LYU Xiaoting, HAN Yufei, WANG Wei, et al. CoBA: Collusive Backdoor Attacks with Optimized Trigger to Federated Learning[J]. IEEE Transactions on Dependable and Secure Computing, 2024, 22(2): 1506-1518. |
| [34] | BAGDASARYAN E, VEIT A, HUA Yiqing, et al. How to Backdoor Federated Learning[C]// PMLR. International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2020: 2938-2948. |
| [35] | VARMA K, ZHOU Yi, BARACALDO N, et al. LEGATO: A Layerwise Gradient Aggregation Algorithm for Mitigating Byzantine Attacks in Federated Learning[C]// IEEE. 2021 IEEE 14th International Conference on Cloud Computing. New York: IEEE, 2021: 272-277. |
| [36] | GOUISSEM A, ABUALSAUD K, YAACOUB E, et al. Federated Learning Stability under Byzantine Attacks[C]// IEEE. 2022 IEEE Wireless Communications and Networking Conference. New York: IEEE, 2022: 572-577. |
| [37] | MA Xindi, JIANG Qi, SHOJAFAR M, et al. DisBezant: Secure and Robust Federated Learning against Byzantine Attack in IoT-Enabled MTS[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(2): 2492-2502. |
| [38] | SHEN Guangyu, LIU Yingqi, TAO Guanhong, et al. Backdoor Scanning for Deep Neural Networks through K-Arm Optimization[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2021: 9525-9536. |
| [39] | XIE Chulin, CHEN Minghao, CHEN P, et al. CRFL: Certifiably Robust Federated Learning against Backdoor Attacks[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2021: 11372-11382. |
| [40] | ZHANG Kai, ZHANG Yanjun, SUN Ruoxi, et al. Bounded and Unbiased Composite Differential Privacy[C]// IEEE. 2024 IEEE Symposium on Security and Privacy. New York: IEEE, 2024: 972-990. |
| [41] | WANG Hongyi, SREENIVASAN K, RAJPUT S, et al. Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 16070-16084. |
| [42] | HAN Xingshuo, ZHANG Xuanye, LAN Xiang, et al. BadSFL: Backdoor Attack against Scaffold Federated Learning[EB/OL]. (2024-11-26)[2025-06-10]. https://arxiv.org/html/2411.16167v2. |
| [43] | LIU Tao, ZHANG Yuhang, FENG Zhu, et al. Beyond Traditional Threats: A Persistent Backdoor Attack on Federated Learning[C]// AAAI. The AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2024: 21359-21367. |
| [44] | ZHUANG Haomin, YU Mingxian, WANG Hao, et al. Backdoor Federated Learning by Poisoning Backdoor-Critical Layers[EB/OL]. (2024-12-31)[2025-06-10]. https://doi.org/10.3390/electronics14010129. |
| [45] | ZHANG Zhengming, PANDA A, SONG Linyue, et al. Neurotoxin: Durable Backdoors in Federated Learning[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2022: 26429-26446. |
| [46] | YE Tiandi, CHEN Cen, WANG Yinggui, et al. BapFL: You Can Backdoor Personalized Federated Learning[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(7): 1-17. |
| [47] | LYU Xiaoting, HAN Yufei, WANG Wei, et al. Poisoning with Cerberus: Stealthy and Colluded Backdoor Attack against Federated Learning[C]// AAAI. The AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2023: 9020-9028. |
| [48] | FAN Mingyuan, HU Zhanyi, WANG Fuyi, et al. Bad-PFL: Exploring Backdoor Attacks against Personalized Federated Learning[EB/OL]. (2025-01-22)[2025-06-10]. https://doi.org/10.48550/arXiv.2501.12736. |
| [49] | JEBREEL N M, DOMINGO-FERRER J. FL-Defender: Combating Targeted Attacks in Federated Learning[EB/OL]. (2022-07-02)[2025-06-10]. https://doi.org/10.48550/arXiv.2207.00872. |
| [50] | CHEN Congcong, WEI Lifei, ZHANG Lei, et al. DeepGuard: Backdoor Attack Detection and Identification Schemes in Privacy-Preserving Deep Neural Networks[EB/OL]. (2022-01-01)[2025-06-10]. https://doi.org/10.1155/2022/298530. |
| [51] | ZHANG Jiale, CHEN Bing, CHENG Xiang, et al. PoisonGAN: Generative Poisoning Attacks against Federated Learning in Edge Computing Systems[J]. IEEE Internet of Things Journal, 2020, 8(5): 3310-3322. |
| [52] | XU Jing, WANG Rui, KOFFAS S, et al. More Is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks[C]// IEEE. The 38th Annual Computer Security Applications Conference. New York: IEEE, 2022: 684-698. |
| [53] | ZHAO Chen, WEN Yu, LI Shuailou, et al. Federatedreverse: A Detection and Defense Method against Backdoor Attacks in Federated Learning[C]// ACM. The 2021 ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2021: 51-62. |
| [54] | LI Henger, WU Chen, ZHU Sencun, et al. Learning to Backdoor Federated Learning[EB/OL]. (2023-05-28)[2025-06-10]. https://doi.org/10.48550/arXiv.2303.03320. |
| [55] | LI Haoyang, YE Qingqing, HU Haibo, et al. 3DFed: Adaptive and Extensible Framework for Covert Backdoor Attack in Federated Learning[C]// IEEE. 2023 IEEE Symposium on Security and Privacy. New York: IEEE, 2023: 1893-1907. |
| [56] | ZHANG Hangfan, JIA Jinyuan, CHEN Jinghui, et al. A3FL: Adversarially Adaptive Backdoor Attacks to Federated Learning[J]. Advances in Neural Information Processing Systems, 2023, 36: 61213-61233. |
| [57] | NGUYEN T D, NGUYEN T A, TRAN A, et al. IBA: Towards Irreversible Backdoor Attacks in Federated Learning[J]. Advances in Neural Information Processing Systems, 2023, 36: 66364-66376. |
| [58] | WANG Bolun, YAO Yuanshun, SHAN S, et al. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks[C]// IEEE.2019 IEEE Symposium on Security and Privacy. New York: IEEE, 2019: 707-723. |
| [59] | LI Yige, LYU Xixiang, KOREN N, et al. Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks[EB/OL]. (2021-01-27)[2025-06-10]. https://doi.org/10.48550/arXiv.2101.05930. |
| [60] | QIU Han, ZENG Yi, GUO Shangwei, et al. DeepSweep: An Evaluation Framework for Mitigating DNN Backdoor Attacks Using Data Augmentation[C]// ACM. The 2021 ACM Asia Conference on Computer and Communications Security. New York: ACM, 2021: 363-377. |
| [61] | WANG He, XU Zhen, ZHANG Yan, et al. Adaptive Layered-Trust Robust Defense Mechanism for Personalized Federated Learning[C]// IEEE. ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE, 2025: 1-5. |
| [62] | XU Shuo, XIA Hui, ZHANG Rui, et al. FedNor: A Robust Training Framework for Federated Learning Based on Normal Aggregation[EB/OL]. (2024-08-08)[2025-06-10]. https://doi.org/10.1016/j.ins.2024.121274. |
| [63] | YANG Ruiguang, SHEN Xiaodong, XU Chang, et al. PR-PFL: A Privacy-Preserving and Robust Personalized Federated Learning Framework[C]// IEEE. 2024 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. New York: IEEE, 2024: 163-170. |
| [64] | ZHU Chengcheng, ZHANG Jiale, WU Di, et al. BDPFL: Backdoor Defense for Personalized Federated Learning via Explainable Distillation[EB/OL]. (2025-05-31)[2025-06-10]. https://doi.org/10.48550/arXiv.2503.06554. |
| [65] | TAN Zhuo, CAI Jianping, LI De, et al. FedPD: Defending Federated Prototype Learning against Backdoor Attacks[EB/OL]. (2024-12-20)[2025-06-10]. https://doi.org/10.1016/j.neunet.2024.107016. |
| [66] | ZHANG Zhenxiao, GUO Yuanxiong, GONG Yanmin. pFedSAM: Secure Federated Learning against Backdoor Attacks via Personalized Sharpness-Aware Minimization[EB/OL]. (2024-05-26)[2025-06-10]. https://openreview.net/forum?id=cz0kQD95o4. |
| [67] | ZHANG Weibin, LI Youpeng, AN Lingling, et al. SARS: A Personalized Federated Learning Framework Towards Fairness and Robustness against Backdoor Attacks[C]// ACM. The ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, New York: ACM, 2024: 1-24. |
| [68] | SUN Ziteng, KAIROUZ P, SURESH A T, et al. Can You Really Backdoor Federated Learning[EB/OL]. (2019-12-02)[2025-06-10]. https://doi.org/10.48550/arXiv.1911.07963. |
| [69] | HUANG Tiansheng, HU Sihao, CHOW K H, et al. Lockdown: Backdoor Defense for Federated Learning with Isolated Subspace Training[J]. Advances in Neural Information Processing Systems, 2023, 36: 10876-10896. |
| [70] | ZUKAIB U, CUI Xiaohui. Mitigating Backdoor Attacks in Federated Learning Based Intrusion Detection Systems through Neuron Synaptic Weight Adjustment[EB/OL].(2025-04-08)[2025-06-10]. https://doi.org/10.1016/j.knosys.2025.113167. |
| [71] | LI Suyi, CHENG Yong, WANG Wei, et al. Learning to Detect Malicious Clients for Robust Federated Learning[EB/OL]. (2020-02-01)[2025-06-10]. https://doi.org/10.48550/arXiv.2002.00211. |
| [72] | GU Zhipin, YANG Yuexiang. Detecting Malicious Model Updates from Federated Learning on Conditional Variational Autoencoder[C]// IEEE. 2021 IEEE International Parallel and Distributed Processing Symposium. New York: IEEE, 2021: 671-680. |
| [73] | ZHANG Zaixi, CAO Xiaoyu, JIA Jinyuan, et al. FLDetector: Defending Federated Learning against Model Poisoning Attacks via Detecting Malicious Clients[C]// ACM. The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 2545-2555. |
| [74] | KUMARI K, RIEGER P, FEREIDOONI H, et al. BayBFed: Bayesian Backdoor Defense for Federated Learning[C]// IEEE. 2023 IEEE Symposium on Security and Privacy. New York: IEEE, 2023: 737-754. |
| [75] | ZHANG Zhiyuan, CHEN Deli, ZHOU Hao, et al. Fed-FA: Theoretically Modeling Client Data Divergence for Federated Language Backdoor Defense[J]. Advances in Neural Information Processing Systems, 2023, 36: 62006-62031. |
| [76] | KRAUß T, DMITRIENKO A. Mesas: Poisoning Defense for Federated Learning Resilient against Adaptive Attackers[C]// ACM. The 2023 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2023: 1526-1540. |
| [77] | HUANG Siquan, LI Yijiang, CHEN Chong, et al. Multi-Metrics Adaptively Identifies Backdoors in Federated Learning[C]// IEEE. The IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2023: 4652-4662. |
| [78] | LI Yilong, ZHANG Jianyi, ZHOU Ziyin, et al. D2FL: Dimensional Disaster-Oriented Backdoor Attack Defense Of Federated Learning[C]// IEEE. 2024 IEEE 23rd International Conference on Trust, Security and Privacy in Computing and Communications. New York: IEEE, 2024: 1790-1796. |
| [79] | ARAMOON O, CHEN P, QU Gang, et al. Meta-Federated Learning[M]. Amsterdam: Academic Press, 2024. |
| [80] | WAN C P, CHEN Qifeng. Robust Federated Learning with Attack-Adaptive Aggregation[EB/OL]. (2021-08-06)[2025-06-10]. https://doi.org/10.48550/arXiv.2102.05257. |
| [81] | FAN Tingyu, CHEN Xiaojun, DONG Ye, et al. Lightweight Secure Aggregation for Personalized Federated Learning with Backdoor Resistance[C]// IEEE. 2024 Annual Computer Security Applications Conference. New York: IEEE, 2024: 810-825. |
| [82] | ZHANG Jianyi, ZHOU Ziyin, LI Yilong, et al. FL-PLAS: Federated Learning with Partial Layer Aggregation for Backdoor Defense against High-Ratio Malicious Clients[EB/OL]. (2025-05-17)[2025-06-10]. https://doi.org/10.48550/arXiv.2505.12019. |
| [83] | LIU Gaoyang, MA Xiaoqiang, YANG Yang, et al. FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models[C]// IEEE. 2021 IEEE/ACM 29th International Symposium on Quality of Service. New York: IEEE, 2021: 1-10. |
| [84] | WU Chen, ZHU Sencun, MITRA P. Federated Unlearning with Knowledge Distillation[EB/OL]. (2022-01-24)[2025-06-10]. https://doi.org/10.48550/arXiv.2201.09441. |
| [85] | ZHANG Yijian, ZHANG Tianxing, LIU Qi, et al. Increasing Depth, Distribution Distillation, and Model Soup: Erasing Backdoor Triggers for Deep Neural Networks[EB/OL]. (2022-11-08)[2025-06-10].https://doi.org/10.1117/1.JEI.31.6.063005. |
| [86] | ANDREINA S, MARSON G A, MÖLLERING H, et al. BaFFLE: Backdoor Detection via Feedback-Based Federated Learning[C]// IEEE. 2021 IEEE 41st International Conference on Distributed Computing Systems. New York: IEEE, 2021: 852-863. |
| [87] | DASHDONDOV K, KIM M H. Mahalanobis Distance Based Multivariate Outlier Detection to Improve Performance of Hypertension Prediction[J]. Neural Processing Letters, 2023, 55(1): 265-277. |
| [88] | TOLPEGIN V, TRUEX S, GURSOY M E, et al. Data Poisoning Attacks against Federated Learning Systems[C]// Springer. Computer Security-ESORICs 2020: 25th European Symposium on Research in Computer Security. Heidelberg: Springer, 2020: 480-501. |
| [89] | ZHANG Jianqing, YANG Hua, WANG Hao, et al. FedALA: Adaptive Local Aggregation for Personalized Federated Learning[C]// AAAI. The AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2023: 11237-11244. |
| [90] | BLANCHARD P, EL M E M, GUERRAOUI R, et al. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[C]// NIPS. The 31st International Conference on Neural Information Processing Systems. Canbridge: MIT Press, 2017: 118-128. |
| [91] | YIN Dong, CHEN Yudong, KANNAN R, et al. Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2018: 5650-5659. |
| [92] | SHEJWALKAR V, HOUMANSADR A. Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning[EB/OL].[2025-06-10]. https://doi.org/10.14722/ndss.2021.24498. |
| [1] | YAN Yukun, TANG Peng, CHEN Rui, DU Ruochen, HAN Qilong. A Randomness Enhanced Bi-Level Optimization Defense Method against Data Poisoning Backdoor Attacks [J]. Netinfo Security, 2025, 25(7): 1074-1091. |
| [2] | DENG Dongshang, WANG Weiye, ZHANG Weidong, WU Xuangou. Layered Personalized Federated Learning Guided by Model Feature Orientation [J]. Netinfo Security, 2025, 25(6): 889-897. |
| [3] | GU Huanhuan, LI Qianmu, LIU Zhen, WANG Fangyuan, JIANG Yu. Research on Hidden Backdoor Prompt Attack Methods Based on False Demonstrations [J]. Netinfo Security, 2025, 25(4): 619-629. |
| [4] | XIA Hui, QIAN Xiangyun. Invisible Backdoor Attack Based on Feature Space Similarity [J]. Netinfo Security, 2024, 24(8): 1163-1172. |
| [5] | LIN Yihang, ZHOU Pengyuan, WU Zhiqian, LIAO Yong. Federated Learning Backdoor Defense Method Based on Trigger Inversion [J]. Netinfo Security, 2024, 24(2): 262-271. |
| [6] | REN Shixuan, WANG Maoyu, ZHAO Hui. An Improved Method of Backdoor Attack in DNN [J]. Netinfo Security, 2021, 21(5): 82-89. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||