Netinfo Security ›› 2024, Vol. 24 ›› Issue (12): 1799-1818.doi: 10.3969/j.issn.1671-1122.2024.12.001
Previous Articles Next Articles
SUN Yu1, XIONG Gaojian1, LIU Xiao2(), LI Yan3
Received:
2024-10-15
Online:
2024-12-10
Published:
2025-01-10
CLC Number:
SUN Yu, XIONG Gaojian, LIU Xiao, LI Yan. A Survey on Trusted Execution Environment Based Secure Inference[J]. Netinfo Security, 2024, 24(12): 1799-1818.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.12.001
分类 | 安全推理方法 | TEE平台 | 部署 平台 | 安全 上界 | 准确率 无损 | REE 加速 | 内存调度优化 | 参数 混淆 | 中间 结果 保护 |
---|---|---|---|---|---|---|---|---|---|
保护全部模型 | MLCapsule[ | Intel SGX | 端侧 | √ | √ | × | √ | × | √ |
Occlumency[ | Intel SGX | 端侧 | √ | √ | × | √ | × | √ | |
Vessels[ | Intel SGX | 端侧 | √ | √ | × | √ | × | √ | |
Lasagna[ | Intel SGX | 多终端 | √ | √ | × | √ | × | √ | |
Penetralium[ | Intel SGX | 端侧 | √ | × | × | √ | × | √ | |
保护模型浅层 | TMP[ | Intel SGX | 端云 | × | √ | √ | × | × | × |
Serdab[ | Intel SGX | 多终端 | × | √ | √ | × | × | × | |
Origami[ | Intel SGX | 端云 | × | √ | √ | × | × | √ | |
保护模型深层 | DarkneTZ[ | Arm TrustZone | 端侧 | × | √ | √ | × | × | × |
Shredder[ | — | 端云 | × | × | √ | × | × | √ | |
eNNClave[ | Intel SGX | 端侧 | × | × | √ | × | × | √ | |
保护模型关键参数 | AegisDNN[ | Intel SGX | 端侧 | × | √ | √ | × | × | × |
Magnitude[ | Intel SGX | 端侧 | × | √ | √ | × | √ | √ | |
SOTER[ | Intel SGX | 端侧 | × | √ | √ | × | √ | √ | |
ShadowNet[ | Arm TrustZone | 端侧 | × | √ | √ | √ | √ | √ | |
NNSplitter[ | — | 端侧 | × | √ | √ | × | √ | × | |
TEESlice[ | Intel SGX | 端侧 | × | × | √ | × | × | √ |
安全推理 方法 | 参数混淆 机制 | 中间结果 保护机制 | 所保护关键 参数 | 核心思路 |
---|---|---|---|---|
AegisDNN[ | 无 | 无 | 静默数据破坏方法,评估 所得重要层 | 动态规划算法,在给定时延下利用TEE保护重要层参数 |
Magnitude[ | 加性混淆 | OTP | 1%的大幅值 参数 | 混淆1%大幅值 参数,在TEE内进行结果准确恢复 |
SOTER[ | 可结合乘法 | 可结合乘法 | 推理结果恢复参数 | 混淆80%网络层参数,在TEE内进行结果准确 恢复 |
ShadowNet[ | 加性混淆& 乘性混淆 | OTP | 推理结果恢复参数 | 混淆所有参数,在TEE内进行结果准确恢复 |
NNSplitter[ | 反向优化 混淆 | 无 | 强化学习搜索关键参数 | 利用强化学习搜索关键参数,并基于反向优化混淆 |
TEESlice[ | 无 | OTP | 重要模型切片 | 先分区后训练,将有价值信息限制在TEE分区中保护 |
分类 | 计算场景 | 安全上界 | 不可绕过 | 失败概率 |
---|---|---|---|---|
TEE保护 推理[ | TEE | √ | √ | 0 |
基于Freivalds 算法[ | TEE | × | √ | |
动态指纹比对 方案[ | REE | × | × | 0.01% |
分类 | 实时性 | 计算量 | 复杂度 | 核心思路 |
TEE保护 推理[ | 弱 | TEE保护全推理过程,提供完整性 | ||
基于Freivalds 算法[ | 中 | 基于Freivalds算法,在TEE内以低复杂度验证REE侧推理结果完整性 | ||
动态指纹比对 方案[ | 强 | 动态生成挑战值并混入批次数据,TEE校验响应值 |
[1] | RIBEIRO M, GROLINGER K, CAPRETZ M A M. MLaaS: Machine Learning as a Service[C]// IEEE. The 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). New York: IEEE, 2015: 896-902. |
[2] | HUSSAIN R, ZEADALLY S. Autonomous Cars: Research Results, Issues, and Future Challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 21(2): 1275-1313. |
[3] | CHEN Jiena, ZHANG Mingzhuo, DU Dehui, et al. Autonomous Driving Behavior Decision-Making with RoboSim Model Based on Bayesian Network[J]. Journal of Software, 2023, 34(8): 3836-3852. |
陈洁娜, 张铭茁, 杜德慧, 等. 基于贝叶斯网络构建RoboSim模型的自动驾驶行为决策[J]. 软件学报, 2023, 34(8):3836-3852. | |
[4] | DENG Hexuan, DING Liang, LIU Xuebo, et al. Improving Simultaneous Machine Translation with Monolingual Data[C]// AAAI. The Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence. Menlo Park: AAAI, 2023: 12728-12736. |
[5] | ZHAO Yuran, MENG Kui. Research on English-Chinese Machine Translation Based on Sentence Grouping[J]. Netinfo Security, 2021, 21(7): 63-71. |
赵彧然, 孟魁. 基于句子分组的中英机器翻译研究[J]. 信息网络安全, 2021, 21(7):63-71. | |
[6] | STOJKOSKA B L R, TRIVODALIEV K V. A Review of Internet of Things for Smart Home: Challenges and Solutions[J]. Journal of Cleaner Production, 2017, 140: 1454-1464. |
[7] | MAO Bo, XU Ke, JIN Yuehui, et al. DeepHome: A Control Model of Smart Home Based on Deep Learning[J]. Chinese Journal of Computers, 2018, 41(12): 2689-2701. |
毛博, 徐恪, 金跃辉, 等. DeepHome:一种基于深度学习的智能家居管控模型[J]. 计算机学报, 2018, 41(12):2689-2701. | |
[8] | BUCZAK A L, GUVEN E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1153-1176. |
[9] | CHENG Tianheng, SONG Lin, GE Yixiao, et al. YOLO-World: Real-Time Open-Vocabulary Object Detection[EB/OL]. (2024-02-22)[2024-10-10]. https://doi.org/10.48550/arXiv.2401.17270. |
[10] | SUN Zhichuang, SUN Ruimin, LU Long. Mind Your Weight(s): A Large-Scale Study on Insufficient Machine Learning Model Protection in Mobile Apps[C]// USENIX. The 30th USENIX Security Symposium (USENIX Security 21). Berkeley: USENIX, 2021: 1955-1972. |
[11] | Guosheng Securities Co., Ltd.. How Much Power does ChatGPT Need?[EB/OL]. (2023-02-12)[2024-10-10]. https://www.fxbaogao.com/detail/3565665. |
国盛证券有限责任公司. ChatGPT 需要多少算力[EB/OL]. (2023-02-12)[2024-10-10]. https://www.fxbaogao.com/detail/3565665. | |
[12] | RAKIN A S, HE Zhezhi, FAN Deliang. Bit-Flip Attack: Crushing Neural Network with Progressive Bit Search[C]// IEEE. The 2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2019: 1211-1220. |
[13] | YAO Fan, RAKIN A S, FAN Deliang, et al. DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips[C]// USENIX. 29th USENIX Security Symposium (USENIX Security 20). Berkeley: USENIX, 2020: 1463-1480. |
[14] | RADFORD A, KIM J W, HALLACY C, et al. Learning Transferable Visual Models from Natural Language Supervision[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2021: 8748-8763. |
[15] | ACHIAM J, ADLER S, AGARWAL S, et al. GPT-4 Technical Report[EB/OL]. (2023-03-15)[2024-10-10]. https://arxiv.org/abs/2303.08774. |
[16] | Baidu Online Network Technology (Beijing) Co., Ltd.. AgentBuilder[EB/OL]. (2023-11-15)[2024-10-10]. https://agents.baidu.com/docs/model/ERNIE_bot_introduce/. |
百度在线网络技术(北京)有限公司. 文心智能体平台[EB/OL]. (2023-11-15)[2024-10-10]. https://agents.baidu.com/docs/model/ERNIE_bot_introduce/. | |
[17] | BAI Jinze, BAI Shuai, CHU Yunfei, et al. Qwen Technical Report[EB/OL]. (2023-09-28)[2024-10-10]. https://arxiv.org/abs/2309.16609. |
[18] | ZHOU Chunyi, CHEN Dawei, WANG Shang, et al. Research and Challenge of Distributed Deep Learning Privacy and Security Attack[J]. Journal of Computer Research and Development, 2021, 58(5): 927-943. |
周纯毅, 陈大卫, 王尚, 等. 分布式深度学习隐私与安全攻击研究进展与挑战[J]. 计算机研究与发展, 2021, 58(5):927-943. | |
[19] | HE Xinlei, LI Zheng, XU Weilin, et al. Membership-Doctor: Comprehensive Assessment of Membership Inference against Machine Learning Models[EB/OL]. (2022-08-22)[2024-10-10]. https://arxiv.org/abs/2208.10445. |
[20] | SHOKRI R, STRONATI M, SONG Congzheng, et al. Membership Inference Attacks against Machine Learning Models[C]// IEEE. The 2017 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2017: 3-18. |
[21] | CHOQUETTE-CHOO C A, TRAMER F, CARLINI N, et al. Label-Only Membership Inference Attacks[C]// PMLR. The 38th International Conference on Machine Learning. New York: PMLR, 2021: 1964-1974. |
[22] | GILAD-BACHRACH R, DOWLIN N, LAINE K, et al. CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy[C]// PMLR. The 33rd International Conference on Machine Learning. New York: PMLR, 2016: 201-210. |
[23] | MISHRA P, LEHMKUHL R, SRINIVASAN A, et al. Delphi: A Cryptographic Inference System for Neural Networks[C]// USENIX. The 29th USENIX Security Symposium (USENIX Security 20). Berkeley: USENIX, 2020: 2505-2522. |
[24] | JUVEKAR C, VAIKUNTANATHAN V, CHANDRAKASAN A. Gazelle: A Low Latency Framework for Secure Neural Network Inference[EB/OL]. (2018-01-16)[2024-10-10]. https://arxiv.org/abs/1801.05507. |
[25] | RATHEE D, RATHEE M, KUMAR N, et al. CrypTFlow2: Practical 2-Party Secure Inference[C]// ACM. The 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 325-342. |
[26] | AL B A, JIN Chao, LIN Jie, et al. Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data with GPUs[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(3): 1330-1343. |
[27] | NG L K L, CHOW S S M. SoK: Cryptographic Neural-Network Computation[C]// IEEE. The 2023 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2023: 497-514. |
[28] | WAGH S, TOPLE S, BENHAMOUDA F, et al. Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning[J]. Proceedings on Privacy Enhancing Technologies, 2021, 2021(1): 188-208. |
[29] | LIU Zhijuan, GAO Jun, DING Qifeng, et al. Research on Development of Trusted Execution Environment Technology on Mobile Platform[J]. Netinfo Security, 2018, 18(2): 84-91. |
刘志娟, 高隽, 丁启枫, 等. 移动终端TEE技术进展研究[J]. 信息网络安全, 2018, 18(2):84-91. | |
[30] | Standardization Administration of the People’s Republic of China. Information Security Technology-Trusted Execution Environment-Basic Security Specification[EB/OL]. (2022-04-15)[2024-10-10]. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=B5B601094A265390BF353980D90E534D. |
中国国家标准化管理委员会. 信息安全技术可信执行环境基本安全规范[EB/OL]. (2022-04-15)[2024-10-10]. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=B5B601094A265390BF353980D90E534D. | |
[31] | ZHANG Fengwei, ZHOU Lei, ZHANG Yiming, et al. Trusted Execution Environment: State-of-the-Art and Future Directions[J]. Journal of Computer Research and Development, 2024, 61(1): 243-260. |
张锋巍, 周雷, 张一鸣, 等. 可信执行环境:现状与展望[J]. 计算机研究与发展, 2024, 61(1): 243-260. | |
[32] | TANG Yu, ZHANG Chi. A Privacy Protection Scheme for Information-Centric Networking Based on Intel SGX[J]. Netinfo Security, 2023, 23(6): 55-65. |
唐雨, 张驰. 一种基于Intel SGX的信息中心网络隐私保护方案[J]. 信息网络安全, 2023, 23(6):55-65. | |
[33] | FAN Guannan, DONG Pan. Research on Trusted Execution Environment Building Technology Based on TrustZone[J]. Netinfo Security, 2016, 16(3): 21-27. |
范冠男, 董攀. 基于TrustZone的可信执行环境构建技术研究[J]. 信息网络安全, 2016, 16(3):21-27. | |
[34] | AMD. SEV-SNP: Strengthening VM Isolation with Integrity Protection and More[EB/OL]. [2024-10-10]. https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vmisolation-with-integrity-protection-and-more.pdf. |
[35] | Phytium Information Technology Co., Ltd.. Phytium Trusted Execution Environment Technology White Paper[EB/OL]. (2023-05-31)[2024-10-10]. https://www.phytium.com.cn/homepage/download/. |
飞腾信息技术有限公司. 飞腾可信执行环境技术白皮书[EB/OL]. (2023-05-31)[2024-10-10]. https://www.phytium.com.cn/homepage/download/. | |
[36] | Phytium Information Technology Co., Ltd.. Phytium-Optee[EB/OL]. (2024-05-30)[2024-10-10]. https://gitee.com/phytium_embedded/phytium-optee. |
飞腾信息技术有限公司. Phytium-Optee[EB/OL]. (2024-05-30)[2024-10-10]. https://gitee.com/phytium_embedded/phytium-optee. | |
[37] | SHEN Youren, TIAN Hongliang, CHEN Yu, et al. Occlum: Secure and Efficient Multitasking Inside a Single Enclave of Intel SGX[C]// ACM. The Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2020: 955-970. |
[38] | TSAI C, PORTER D E, VIJ M. Graphene-SGX: A Practical Library OS for Unmodified Applications on SGX[C]// USENIX. The 2017 USENIX Conference on Usenix Annual Technical Conference. Berkeley: USENIX, 2017: 645-658. |
[39] | KELEKET G C J Y, YI Wenzhe, WANG Juan. A Lightweight Trusted Execution Environment Construction Method for Fabric Chaincode Based on SGX[J]. Netinfo Security, 2022, 22(7): 73-83. |
KELEKET G C J Y, 易文哲, 王鹃. 一种基于SGX的轻量Fabric链码可信执行环境构建方法[J]. 信息网络安全, 2022, 22(7):73-83. | |
[40] | LEE T, LIN Zhiqi, PUSHP S, et al. Occlumency: Privacy-Preserving Remote Deep-Learning Inference Using SGX[C]// ACM. The 25th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2019: 1-17. |
[41] | YANG Mengda, YI Wenzhe, WANG Juan, et al. Penetralium: Privacy-Preserving and Memory-Efficient Neural Network Inference at the Edge[J]. Future Generation Computer Systems, 2024, 156: 30-41. |
[42] | Ultralytics. Yolov5 of Ultralytics HUB[EB/OL]. (2024-10-05)[2024-10-10]. https://github.com/ultralytics/yolov5. |
[43] | SANYAL S, ADDEPALLI S, BABU R V. Towards Data-Free Model Stealing in a Hard Label Setting[C]// IEEE. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2022: 15263-15272. |
[44] | OREKONDY T, SCHIELE B, FRITZ M. Knockoff Nets: Stealing Functionality of Black-Box Models[C]// IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 4949-4958. |
[45] | YU Honggang, YANG Kaichen, ZHANG Teng, et al. CloudLeak: Large-Scale Deep Learning Models Stealing through Adversarial Examples[EB/OL]. (2020-02-23)[2024-10-10]. https://www.ndss-symposium.org/wp-content/uploads/2020/02/24178-paper.pdf. |
[46] | LIU Yannan, WEI Lingxiao, LUO Bo, et al. Fault Injection Attack on Deep Neural Network[C]// IEEE. 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). New York: IEEE, 2017: 131-138. |
[47] | VAN D V V, FRATANTONIO Y, LINDORFER M, et al. Drammer: Deterministic Rowhammer Attacks on Mobile Platforms[C]// ACM. The 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 1675-1689. |
[48] | SASY S, GORBUNOV S, FLETCHER C W. ZeroTrace: Oblivious Memory Primitives from Intel SGX[EB/OL]. (2018-02-18)[2024-10-10]. https://www.semanticscholar.org/paper/ZeroTrace-:-Oblivious-Memory-Primitives-from-Intel-Sasy-Gorbunov/7fd257b33847ac8f07da472a7f8c10311d9061dc. |
[49] | DESSOUKY G, FRASSETTO T, SADEGHI A R. HYBCACHE: Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments[C]// USENIX. The 29th USENIX Conference on Security Symposium. Berkeley: USENIX, 2020: 451-468. |
[50] | YAROM Y, FALKNER K. FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack[C]//USENIX. The 23rd USENIX Security Symposium. Berkeley: USENIX, 2014: 719-732. |
[51] | EVTYUSHKIN D, RILEY R, ABU-GHAZALEH N C A E, et al. BranchScope: A New Side-Channel Attack on Directional Branch Predictor[C]// ACM. The Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2018, 53: 693-707. |
[52] | WANG Wenhao, CHEN Guoxing, PAN Xiaorui, et al. Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX[C]// ACM. The 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 2421-2434. |
[53] | CHEN Guoxing, CHEN Sanchuan, XIAO Yuan, et al. SgxPectre: Stealing Intel Secrets from SGX Enclaves via Speculative Execution[J]. IEEE Security & Privacy, 2020, 18(3): 28-37. |
[54] | ZHANG Ziqi, GONG Chen, CAI Yifeng, et al. No Privacy Left Outside: On the (in-)Security of TEE-Shielded DNN Partition for on-Device ML[C]// IEEE. 2024 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2024: 3327-3345. |
[55] | JOHNSON S, SCARLATA V, ROZAS C, et al. Intel Software Guard Extensions: EPID Provisioning and Attestation Services[EB/OL]. (2016-12-30)[2024-10-10]. https://community.intel.com/legacyfs/online/drupal_files/managed/57/0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf. |
[56] | HUA Weizhe, ZHANG Zhiru, SUH G E. Reverse Engineering Convolutional Neural Networks through Side-Channel Information Leaks[C]// IEEE. 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). New York: IEEE, 2018: 1-6. |
[57] | RAKIN A S, CHOWDHURYY M H I, YAO Fan, et al. DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories[C]// IEEE. 2022 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2022: 1157-1174. |
[58] | YAN Mengjia, FLETCHER C, TORRELLAS J. Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[C]// USENIX. The 29th USENIX Conference on Security Symposium. Berkeley: USENIX, 2020: 2003-2020. |
[59] | HANZLIK L, ZHANG Yang, GROSSE K, et al. MLCapsule: Guarded Offline Deployment of Machine Learning as a Service[C]// IEEE. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New York: IEEE, 2021: 3295-3304. |
[60] | KIM K, KIM C H, RHEE J J, et al. Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors[C]// ACM. The 11th ACM Symposium on Cloud Computing. New York: ACM, 2020: 462-476. |
[61] | LI Yuepeng, ZENG Deze, GU Lin, et al. Efficient and Secure Deep Learning Inference in Trusted Processor Enabled Edge Clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 4311-4325. |
[62] | GU Zhongshu, HUANG Heqing, ZHANG Jialong, et al. Confidential Inference via Ternary Model Partitioning[EB/OL]. (2018-07-03)[2024-10-10]. https://api.semanticscholar.org/CorpusID:235946760. |
[63] | ELGAMAL T, NAHRSTEDT K. Serdab: An IoT Framework for Partitioning Neural Networks Computation Across Multiple Enclaves[C]// IEEE. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). New York: IEEE, 2020: 519-528. |
[64] | NARRA K G, LIN Zhifeng, WANG Yongqin, et al. Origami Inference: Private Inference Using Hardware Enclaves[C]// IEEE. 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). New York: IEEE, 2021: 78-84. |
[65] | MO Fan, SHAMSABADI A S, KATEVAS K, et al. DarkneTZ: Towards Model Privacy at the Edge Using Trusted Execution Environments[C]// ACM. Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services. New York: ACM, 2020: 161-174. |
[66] | MIRESHGHALLAH F, TARAM M, RAMRAKHYANI P, et al. Shredder: Learning Noise Distributions to Protect Inference Privacy[C]// ACM. Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2020: 3-18. |
[67] | SCHLÖGL A, BÖHME R. ENNclave: Offline Inference with Model Confidentiality[C]// ACM. Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2020: 93-104. |
[68] | XIANG Yecheng, WANG Yidi, CHOI H, et al. AegisDNN: Dependable and Timely Execution of DNN Tasks with SGX[C]// IEEE. 2021 IEEE Real-Time Systems Symposium (RTSS). New York: IEEE, 2021: 68-81. |
[69] | HOU Jiahui, LIU Huiqi, LIU Yunxin, et al. Model Protection: Real-Time Privacy-Preserving Inference Service for Model Privacy at the Edge[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(6): 4270-4284. |
[70] | SHEN Tianxiang, QI Ji, JIANG Jianyu, et al. SOTER: Guarding Black-Box Inference for General Neural Networks at the Edge[C]// USENIX. 2022 USENIX Annual Technical Conference (USENIX ATC 22). Berkeley: USENIX, 2022: 723-738. |
[71] | SUN Zhichuang, SUN Ruimin, LIU Changming, et al. ShadowNet: A Secure and Efficient On-Device Model Inference System for Convolutional Neural Networks[C]// IEEE. 2023 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2023: 1596-1612. |
[72] | ZHOU Tong, LUO Yukui, REN Shaolei, et al. NNSplitter: An Active Defense Solution to DNN Model via Automated Weight Obfuscation[C]// ICML. The 40th International Conference on Machine Learning. New York: ACM, 2023: 42614-42624. |
[73] | BREIER J, JAP D, HOU Xiaolu, et al. SNIFF: Reverse Engineering of Neural Networks with Fault Attacks[J]. IEEE Transactions on Reliability, 2022, 71(4): 1527-1539. |
[74] | ROLNICK D, KORDING K. Reverse-Engineering Deep ReLU Networks[C]// ICML. The 37th International Conference on Machine Learning. New York: ACM, 2020: 8178-8187. |
[75] | LIU Zhibo, YUAN Yuanyuan, WANG Shuai, et al. Decompiling x86 Deep Neural Network Executables[C]// USENIX. The Proceedings of the 32nd USENIX Security Symposium. Berkeley: USENIX, 2023: 7357-7374. |
[76] | HU Jian, GONG Ke, MAO Yimin, et al. Parallel Deep Convolution Neural Network Optimization Based on Im2col[J]. Application Research of Computers, 2022, 39(10): 2950-2956. |
胡健, 龚克, 毛伊敏, 等. 基于Im2col的并行深度卷积神经网络优化算法[J]. 计算机应用研究, 2022, 39(10):2950-2956. | |
[77] | YANAI K, TANNO R, OKAMOTO K. Efficient Mobile Implementation of a CNN-Based Object Recognition System[C]// ACM. Proceedings of the 24th ACM international conference on Multimedia. New York: ACM, 2016: 362-366. |
[78] | YE Hanchen, ZHANG Xiaofan, HUANG Zhize, et al. HybridDNN: A Framework for High-Performance Hybrid DNN Accelerator Design and Implementation[C]// IEEE. 2020 57th ACM/IEEE Design Automation Conference (DAC). New York: IEEE, 2020: 1-6. |
[79] | TIAN Hongliang, ZHANG Qiong, YAN Shoumeng, et al. Switchless Calls Made Practical in Intel SGX[C]// ACM. Proceedings of the 3rd Workshop on System Software for Trusted Execution. New York: ACM, 2018: 22-27. |
[80] | SWAMI Y. SGX Remote Attestation Is Not Sufficient[EB/OL]. (2017-08-01)[2024-10-10]. https://api.semanticscholar.org/CorpusID:41067899. |
[81] | TRAMER F, BONEH D. Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware[EB/OL]. (2018-06-08)[2024-10-10]. https://api.semanticscholar.org/CorpusID:47012356. |
[82] | ZHANG Yuheng, JIA Ruoxi, PEI Hengzhi, et al. The Secret Revealer: Generative Model-Inversion Attacks against Deep Neural Networks[C]// IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 250-258. |
[83] | FREDRIKSON M, JHA S, RISTENPART T. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures[C]// ACM. The 22nd ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2015: 1322-1333. |
[84] | WU Xi, FREDRIKSON M, JHA S, et al. A Methodology for Formalizing Model-Inversion Attacks[C]// IEEE. 2016 IEEE 29th Computer Security Foundations Symposium (CSF). New York: IEEE, 2016: 355-370. |
[85] | XU Sheng, LI Yanjing, LIN Mingbao, et al. Q-DETR: An Efficient Low-Bit Quantized Detection Transformer[C]// IEEE. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023: 3842-3851. |
[86] | NEYSHABUR B, SEDGHI H, ZHANG Chiyuan. What is Being Transferred in Transfer Learning?[J]. Advances in Neural Information Processing Systems, 2020, 33: 512-523. |
[87] | WEISS K, KHOSHGOFTAAR T M, WANG Dingding. A Survey of Transfer Learning[J]. Journal of Big Data, 2016, 3: 1-40. |
[88] | HU E J, SHEN Yelong, WALLIS P, et al. LoRA: Low-Rank Adaptation of Large Language Models[EB/OL]. (2021-06-17)[2024-10-10]. https://api.semanticscholar.org/CorpusID:235458009. |
[89] | PAN Rui, LIU Xiang, DIAO Shizhe, et al. LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning[EB/OL]. (2024-03-26)[2024-10-10]. https://arxiv.org/abs/2403.17919. |
[90] | AGHAJANYAN A, ZETTLEMOYER L, GUPTA S. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning[EB/OL]. (2020-12-22)[2024-10-10]. https://doi.org/10.48550/arxiv.2012.13255. |
[91] | WANG Ji, BAO Weidong, SUN Lichao, et al. Private Model Compression via Knowledge Distillation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 1190-1197. |
[92] | POLINO A, PASCANU R, ALISTARH D. Model Compression via Distillation and Quantization[EB/OL]. (2018-02-15)[2024-10-10]. https://api.semanticscholar.org/CorpusID:3323727. |
[93] | HWANG R, KANG M, LEE J, et al. GROW: A Row-Stationary Sparse-Dense GEMM Accelerator for Memory-Efficient Graph Convolutional Neural Networks[C]// IEEE. 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA). New York: IEEE, 2023: 42-55. |
[94] | MISHRA A, LATORRE J A, POOL J, et al. Accelerating Sparse Deep Neural Networks[EB/OL]. (2021-04-16)[2024-10-10]. https://arxiv.org/abs/2104.08378. |
[95] | AGARAP A F. Deep Learning Using Rectified Linear Units (ReLU)[EB/OL]. (2018-03-22)[2024-10-10]. https://arxiv.org/abs/1803.08375. |
[96] | ZHANG Chao, WOODLAND P C. Parameterised sigmoid and ReLU Hidden Activation Functions for DNN Acoustic Modelling[C]// ISCA. 16th Annual Conference of the International Speech Communication Association. Dresden: ISCA, 2015: 3224-3228. |
[97] | NEHAL A, AHLAWAT P. Securing IoT Applications with OP-TEE from Hardware Level OS[C]// IEEE. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). New York: IEEE, 2019: 1441-1444. |
[98] | Linaro. Open Portable Trusted Execution Environment[EB/OL]. (2024-07-12)[2024-10-10]. https://www.op-tee.org. |
[99] | ZHANG Ziqi, NG L K L, LIU Bingyan, et al. TEESlice: Slicing DNN Models for Secure and Efficient Deployment[C]// ACM. The 2nd ACM International Workshop on AI and Software Testing/Analysis. New York: ACM, 2022: 1-8. |
[100] | MORGADO P, VASCONCELOS N. NetTailor:Tuning the Architecture, Not Just the Weights[C]// IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 3039-3049. |
[101] | SUN Yu, XIONG Gaojian, LIU Jianhua, et al. TSQP: Safeguarding Real-Time Inference for Quantization Neural Networks on Edge Devices[EB/OL]. [2024-10-10]. https://www.computer.org/csdl/proceedings-article/sp/2025/223600a001/21B7PUpAEnu. |
[102] | FREIVALDS R. Fast Probabilistic Algorithms[C]// Springer. The International Symposium on Mathematical Foundations of Computer Science. Heidelberg: Springer, 2005: 57-69. |
[103] | HAN Kai, WANG Yunhe, CHEN Hanting, et al. A Survey on Vision Transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110. |
[104] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-End Object Detection with Transformers[M]. Heidelberg: Springer, 2020. |
[105] | TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: Open and Efficient Foundation Language Models[EB/OL]. (2023-02-27)[2024-10-10]. https://api.semanticscholar.org/CorpusID:257219404. |
[106] | Hangzhou Linkway Technology Co., Ltd.. Om Vision Large Model[EB/OL]. (2024-04-06)[2024-10-10]. https://om.linker.cc/. |
杭州联汇科技股份有限公司. 欧姆视觉大模型[EB/OL]. (2024-04-06)[2024-10-10]. https://om.linker.cc/. | |
[107] | CHENG P, OZGA W, VALDEZ E, et al. Intel TDX Demystified: A Top-Down Approach[J]. ACM Computing Surveys, 2024, 56(9): 1-33. |
[108] | LI Xupeng, LI Xuheng, DALL C, et al. Design and Verification of the Arm Confidential Compute Architecture[C]// USENIX. The 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). Berkeley: USENIX, 2022: 465-484. |
[109] | ROMBACH R, BLATTMANN A, LORENZ D, et al. High-Resolution Image Synthesis with Latent Diffusion Models[C]// IEEE. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2021: 10674-10685. |
[110] | LIU Yixin, ZHANG Kai, LI Yuan, et al. Sora: A Review on Background, Technology, Limitations, and Opportunities of Large Vision Models[EB/OL]. (2024-02-27)[2024-10-10]. https://api.semanticscholar.org/CorpusID:268032569. |
[111] | DUAN Sijing, WANG Dan, REN Ju, et al. Distributed Artificial Intelligence Empowered by End-Edge-Cloud Computing: A Survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 591-624. |
[112] | HU Shijing, DENG Ruijun, DU Xin, et al. LAECIPS: Large Vision Model Assisted Adaptive Edge-Cloud Collaboration for IoT-Based Perception System[EB/OL]. (2024-04-16)[2024-10-10]. https://api.semanticscholar.org/CorpusID:269157260. |
[113] | CHEN Ning, YANG Jie, CHENG Zhipeng, et al. GainNet: Coordinates the Odd Couple of Generative AI and 6G Networks[J]. IEEE Network, 2024, 38(5): 56-65. |
[1] | TANG Yu, ZHANG Chi. A Privacy Protection Scheme for Information-Centric Networking Based on Intel SGX [J]. Netinfo Security, 2023, 23(6): 55-65. |
[2] | KELEKET GOMA Christy Junior Yannick, YI Wenzhe, WANG Juan. A Lightweight Trusted Execution Environment Construction Method for Fabric Chaincode Based on SGX [J]. Netinfo Security, 2022, 22(7): 73-83. |
[3] | YOU Weijing, LIU Limin, MA Yue, HAN Dong. An Intel SGX-based Proof of Encryption in Clouds [J]. Netinfo Security, 2020, 20(12): 1-8. |
[4] | Zhijuan LIU, Jun GAO, Qifeng DING, Yuewu WANG. Research on Development of Trusted Execution Environment Technology on Mobile Platform [J]. Netinfo Security, 2018, 18(2): 84-91. |
[5] | Guannan FAN, Pan DONG. Research on Trusted Execution Environment Building Technology Based on TrustZone [J]. Netinfo Security, 2016, 16(3): 21-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||