Netinfo Security ›› 2024, Vol. 24 ›› Issue (11): 1643-1654.doi: 10.3969/j.issn.1671-1122.2024.11.004
Previous Articles Next Articles
LAN Haoliang1(), WANG Qun1, XU Jie1, XUE Yishi1, ZHANG Bo2
Received:
2024-08-10
Online:
2024-11-10
Published:
2024-11-21
CLC Number:
LAN Haoliang, WANG Qun, XU Jie, XUE Yishi, ZHANG Bo. Review of Research on Blockchain-Based Federated Learning[J]. Netinfo Security, 2024, 24(11): 1643-1654.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.11.004
序号 | 攻击方式 | 主要特点 | 防御手段 | 文献(近5年) |
---|---|---|---|---|
1 | 单点故障 | 影响模型聚合、消耗大量资源 | 错误率、损失函数、节点共识 | [ |
2 | 拒绝服务 | 瘫痪中央服务器或整个系统 | 拜占庭共识、知识图谱、知识库 | [ |
3 | 搭便车 | 影响效率、有效性、公平性 | 审查、异常值检测、高斯混合模型 | [ |
4 | 投毒 | 影响训练和聚合的准确性 | 交叉检测、节点选择、梯度选择 | [ |
5 | 中间人 | 欺骗会话双方、劫持会话信息 | 签名、临时聚合器、安全通道 | [ |
6 | 窃听 | 导致敏感信息泄露或网络中断 | 梯度稀疏、差分隐私、同态加密 | [ |
7 | 后门 | 操纵模型在特定输入下的输出 | 对比训练、范数阈值、触发器 | [ |
序号 | 共识机制 | 能耗 | 优势 | 不足 |
---|---|---|---|---|
1 | PoW | 高 | 去中心化度、节点进出、安全性、扩展性 | 资源消耗、共识周期 |
2 | PoS | 适中 | 资源消耗、共识速度、 块生成效率 | 中心化、实现、安全性 |
3 | DPoW | 低 | 安全性、共识速度、 验证和记账节点 | 去中心化度、效率 |
4 | DPoS | 低 | 验证和记账节点、共识速度、资源消耗 | 公平性差、依赖令牌 |
5 | Pbft | 低 | 资源消耗、吞吐量、 共识效率、交易频次 | 复杂度、扩展性、 节点数 |
6 | Paxos | 低 | 性能、资源消耗、 代币需求 | 容错性、实现 |
7 | Raft | 低 | 资源消耗、共识效率、 可用性、一致性 | 容错性 |
8 | Pool | 适中 | 代币需求、共识速度 | 去中心化度 |
9 | CoPC | 低 | 共识效率、考虑贡献度、隐私性 | 复杂度、效率 |
10 | PF-PoFL | 高 | 性能、隐私性、安全性 | 资源消耗、共识周期 |
11 | PoQ | 低 | 数据共享相率、 资源利用率 | 隐私性、安全性 |
[1] | QU Youyang, UDDIN M P, GAN Chenquan, et al. Blockchain-Enabled Federated Learning: A Survey[J]. ACM Computing Surveys, 2022, 55(4): 1-35. |
[2] |
SUN Rui, LI Chao, WANG Wei, et al. Research Progress of Blockchain-Based Federated Learning[J]. Journal of Computer Applications, 2022, 42(11): 3413-3420.
doi: 10.11772/j.issn.1001-9081.2021111934 |
孙睿, 李超, 王伟, 等. 基于区块链的联邦学习研究进展[J]. 计算机应用, 2022, 42(11): 3413-3420.
doi: 10.11772/j.issn.1001-9081.2021111934 |
|
[3] | MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A Survey on Security and Privacy of Federated Learning[J]. Future Generation Computer Systems, 2021, 115: 619-640. |
[4] | KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and Open Problems in Federated Learning[J]. Foundations and Trends in Machine Learning, 2021, 14(1-2): 1-21. |
[5] | YUAN Yong, WANG Feiyue. Blockchain: The State of the Art and Future Trends[J]. Acta Automatica Sinica, 2016, 42(4): 481-494. |
袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4): 481-494. | |
[6] | TAN Pengliu, XU Teng, YANG Sijia, et al. Review of Research on Blockchain Privacy Protection Technologies[J]. Application Research of Computers, 2024, 41(8): 2261-2269. |
谭朋柳, 徐滕, 杨思佳, 等. 区块链隐私保护技术研究综述[J]. 计算机应用研究, 2024, 41(8): 2261-2269. | |
[7] | QIAO Shaojie, LIN Yufeng, HAN Nan, et al. Decentralized Federated Learning Framework Based on Proof-of-Contribution Consensus Mechanism[J]. Journal of Software, 2023, 34(3): 1148-1167. |
乔少杰, 林羽丰, 韩楠, 等. 基于贡献度证明共识机制的去中心化联邦学习框架[J]. 软件学报, 2023, 34(3): 1148-1167. | |
[8] | ZHU Jianming, ZHANG Qinnan, GAO Sheng, et al. Privacy Preserving and Trustworthy Federated Learning Model Based on Blockchain[J]. Chinese Journal of Computers, 2021, 44(12): 2464-2484. |
朱建明, 张沁楠, 高胜, 等. 基于区块链的隐私保护可信联邦学习模型[J]. 计算机学报, 2021, 44(12): 2464-2484. | |
[9] | ZHOU Wei, WANG Chao, XU Jian, et al. Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. |
周炜, 王超, 徐剑, 等. 基于区块链的隐私保护去中心化联邦学习模型[J]. 计算机研究与发展, 2022, 59(11): 2423-2436. | |
[10] | LI Yuzheng, CHEN Chuan, LIU Nan, et al. A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus[J]. IEEE Network, 2020, 35(1): 234-241. |
[11] | NGUYEN D C, DING Ming, PHAM Q V, et al. Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges[J]. IEEE Internet of Things, 2021, 8(16): 12806-12825. |
[12] | HUANG Xiaoke, DENG Xuesong, CHEN Qianbin, et al. Asynchronous Federated Learning via Blockchain in Edge Computing Networks[J]. Journal of Electronics & Information Technology, 2024, 46(1): 195-203. |
黄晓舸, 邓雪松, 陈前斌, 等. 边缘计算网络中区块链赋能的异步联邦学习算法[J]. 电子与信息学报, 2024, 46(1): 195-203. | |
[13] | WANG Weilong, WANG Yingjie, HUANG Yan, et al. Privacy Protection Federated Learning System Based on Blockchain and Edge Computing in Mobile Crowdsourcing[EB/OL]. (2022-10-09)[2024-05-30]. https://doi.org/10.1016/j.comnet.2022.109206. |
[14] | KIM Y J, HONG C S. Blockchain-Based Node-Aware Dynamic Weighting Methods for Improving Federated Learning Performance[C]//IEEE. 20th Asia-Pacific Network Operations and Management Symposium. New York: IEEE, 2019: 1-4. |
[15] | HIEU N Q, TRAN T A, NGUYEN C L, et al. Deep Reinforcement Learning for Resource Management in Blockchain-Enabled Federated Learning Network[J]. IEEE Networking Letters, 2022, 4(3): 137-141. |
[16] | ZHANG Jiaxiang, LIU Yiming, QIN Xiaoqi, et al. Adaptive Resource Allocation for Blockchain-Based Federated Learning in Internet of Things[J]. IEEE Internet of Things Journal, 2023, 10(12): 10621-10635. |
[17] | ZHANG Baochen, HUANG Yue, KONG Lanju, et al. A Trustworthy and Fair Blockchain Framework Supporting Adaptive Federated Learning Task[J]. Journal of Computer Research and Development, 2023, 60(11): 2504-2519. |
张宝晨, 黄月, 孔兰菊, 等. 一种支持自适应联邦学习任务的可信公平区块链框架[J]. 计算机研究与发展, 2023, 60(11): 2504-2519. | |
[18] | HAN Xuan, YUAN Yong, WANG Feiyue. Security Problems on Blockchain: The State of the Art and Future Trends[J]. Acta Automatica Sinica, 2019, 45(1): 206-225. |
韩璇, 袁勇, 王飞跃. 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019, 45(1): 206-225. | |
[19] | LIU Aodi, DU Xuehui, WANG Na, et al. Research Progress on Blockchain System Security Technology[J]. Chinese Journal of Computers, 2024, 47(3): 608-646. |
刘敖迪, 杜学绘, 王娜, 等. 区块链系统安全防护技术研究进展[J]. 计算机学报, 2024, 47(3): 608-646. | |
[20] | MOUDOUD H, CHERKAOUI S, KHOUKHI L. Towards a Secure and Reliable Federated Learning Using Blockchain[C]//IEEE. Global Communications Conferenc. New York: IEEE, 2021: 1-6. |
[21] |
LI Zonghang, YU Hongfang, ZHOU Tianyao, et al. Byzantine Resistant Secure Blockchained Federated Learning at The Edge[J]. IEEE Network, 2021, 35(4): 295-301.
doi: 10.1109/MNET.011.2000604 |
[22] | MA Chuan, LI Jun, SHI Long, et al. When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm[J]. IEEE Computational Intelligence Magazine, 2022, 17(3): 26-33. |
[23] | YU Feng, LIN Hui, WANG Xiaoding, et al. Blockchain-Empowered Secure Federated Learning System: Architecture and Applications[J]. Computer Communications, 2022, 196: 55-65. |
[24] | WANG Jinpeng, DAI Huan, LI Kaicheng, et al. Trustworthy Federated Learning Method Based on Consortium Blockchain[J]. Computer Engineering and Design, 2023, 44(12): 3545-3553. |
王金鹏, 戴欢, 李凯程, 等. 基于联盟链的可信联邦学习方法[J]. 计算机工程与设计, 2023, 44(12): 3545-3553. | |
[25] | LUO Fulin, CHEN Yunfang, CHEN Xu, et al. Federated Learning Model Aggregation Scheme Based on Blockchain[J]. Application Research of Computers, 2024, 41(8): 2277-2283. |
罗福林, 陈云芳, 陈序, 等. 基于区块链的联邦学习模型聚合方案[J]. 计算机应用研究, 2024, 41(8): 2277-2283. | |
[26] | LI Kun, ZHOU Huachun, TU Zhe, et al. Blockchain Empowered Federated Learning for Distributed Network Security Behaviour Knowledge Base in 6G[EB/OL]. (2022-01-01)[2024-04-30]. https://doi.org/10.1155/2022/4233238. |
[27] | WANG Kaiqi, HONG Ruiqi, MAO Yunlong, et al. Secure Solution for Decentralized Federated Learning with Blockchain[J]. Scientia Sinica Informationis, 2024, 54(2): 316-334. |
王恺祺, 洪睿琦, 毛云龙, 等. 基于区块链构建安全去中心化的联邦学习方案[J]. 中国科学, 2024, 54(2): 316-334. | |
[28] | FRABONI Y, VIDAL R, LORENZI M. Free-Rider Attacks on Model Aggregation in Federated Learning[C]//PMLR. International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2021: 1846-1854. |
[29] | WANG Bo, LI Hongtao, LIU Ximeng, et al. FRAD: Free-Rider Attacks Detection Mechanism for Federated Learning in Aiot[J], IEEE Internet of Things, 2024, 11(3): 4377-4388. |
[30] |
CHEN Wanzhen, ZHANG En, QIN Leiyong, et al. Privacy-Preserving Federated Learning Algorithm Based on Blockchain in Edge Computing[J]. Journal of Computer Applications, 2023, 43(7): 2209-2216.
doi: 10.11772/j.issn.1001-9081.2022060909 |
陈宛桢, 张恩, 秦磊勇, 等. 边缘计算下基于区块链的隐私保护联邦学习算法[J]. 计算机应用, 2023, 43(7): 2209-2216.
doi: 10.11772/j.issn.1001-9081.2022060909 |
|
[31] | SHORT A R, LELIGOU H C, PAPOUTSIDAKIS M, et al. Using Blockchain Technologies to Improve Security in Federated Learning Systems[C]//IEEE. 44th Annual Computers, Software, and Applications Conference. New York: IEEE, 2020: 1183-1188. |
[32] | RAHMAN M A, HOSSAIN M S, ISLAM M S, et al. Secure and Provenance Enhanced Internet of Health Things Framework: A Blockchain Managed Federated Learning Approach[J]. IEEE Access, 2020, 8: 205071-205087. |
[33] | WEN Jie, ZHANG Zhixia, LAN Yang, et al. A Survey on Federated Learning: Challenges and Applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 513-535. |
[34] | ALGHAMDI A, ZHU Jiang, YIN Guocai, et al. Blockchain Empowered Federated Learning Ecosystem for Securing Consumer IoT Features Analysis[EB/OL]. (2022-09-08)[2024-04-30]. https://doi.org/10.3390/s22186786. |
[35] | LIU Yi, PENG Jialiang, KANG Jiawen, et al. A Secure Federated Learning Framework for 5G Networks[J]. IEEE Wireless Communications, 2020, 27(4): 24-31. |
[36] | KUMAR S, DUTTA S, CHATTURVEDI S, et al. Strategies for Enhancing Training and Privacy in Blockchain Enabled Federated Learning[C]//IEEE. 6th International Conference on Multimedia Big Data. New York: IEEE, 2020: 333-340. |
[37] |
ZHANG Jiale, ZHU Chengcheng, CHENG Xiang, et al. Backdoor Defense Method in Federated Learning Based on Contrastive Training[J]. Journal on Communications, 2024, 45(3): 182-196.
doi: 10.11959/j.issn.1000-436x.2024063 |
张佳乐, 朱诚诚, 成翔, 等. 基于对比训练的联邦学习后门防御方法[J]. 通信学报, 2024, 45(3): 182-196.
doi: 10.11959/j.issn.1000-436x.2024063 |
|
[38] | LIN Yihang, ZHOU Pengyuan, WU Zhiqian, et al. Federated Learning Backdoor Defense Method Based on Trigger Inversion[J]. Netinfo Security, 2024, 24(2): 262-271. |
林怡航, 周鹏远, 吴治谦, 等. 基于触发器逆向的联邦学习后门防御方法[J]. 信息网络安全, 2024, 24(2): 262-271. | |
[39] | LIU Wei, TANG Zongke, MA Jie, et al. A Federated Learning Model for Privacy Protection Based on Blockchain and Dynamic Evaluation[J]. Journal of Computer Research and Development, 2023, 60(11): 2583-2593. |
刘炜, 唐琮轲, 马杰, 等. 基于区块链和动态评估的隐私保护联邦学习模型[J]. 计算机研究与发展, 2023, 60(11): 2583-2593. | |
[40] | QI Yuanhang, HOSSAIN M S, NIE Jiangtian, et al. Privacy-Preserving Blockchain-Based Federated Learning for Traffic Flow Prediction[J]. Future Generation Computer Systems, 2021, 117: 328-337. |
[41] | AWAN S, LI Fengjun, LUO Bo, et al. Poster: A Reliable and Accountable Privacy-Preserving Federated Learning Framework Using the Blockchain[C]// ACM. SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 2561-2563. |
[42] | QIN Zhenquan, YE Jin, MENG Jie, et al. Privacy-Preserving Blockchain-Based Federated Learning for Marine Internet of Things[J]. IEEE Transactions on Computational Social Systems, 2021, 9(1): 159-173. |
[43] | TOYODA K, ZHAO Jun, ZANG A N S, et al. Blockchain-Enabled Federated Learning with Mechanism Design[J]. IEEE Access, 2020, 8: 219744-219756. |
[44] | WANG Zexin, YAN Biwei, DONG Anming. Blockchain Empowered Federated Learning for Data Sharing Incentive Mechanism[J]. Procedia Computer Science, 2022, 202: 348-353. |
[45] | WANG Zhilin, HU Qin, LI Ruinian, et al. Incentive Mechanism Design for Joint Resource Allocation in Blockchain-Based Federated Learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(5): 1536-1547. |
[46] | EYAL I, GENCER A E, SIRER E G, et al. Bitcoin-NG: A Scalable Blockchain Protocol[C]//USENIX. 13th Symposium on Networked Systems Design and Implementation. Berkeley: USENIX, 2016: 45-59. |
[47] |
KANG Jiawen, XIONG Zhehui, NIYATO D, et al. Incentive Mechanism for Reliable Federated Learning: A Joint Optimization Approach to Combining Reputation and Contract Theory[J]. IEEE Internet of Things Journal, 2019, 6(6): 10700-10714.
doi: 10.1109/JIOT.2019.2940820 |
[48] | POKHREL S R, CHOI J. Federated Learning with Blockchain for Autonomous Vehicles: Analysis and Design Challenges[J]. IEEE Transactions on Communications, 2020, 68(8): 4734-4746. |
[49] | WANG Yuntao, PENG Haixia, SU Zhou, et al. A Platform-Free Proof of Federated Learning Consensus Mechanism for Sustainable Blockchains[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3305-3324. |
[50] | LU Yunlong, HUANG Xiaohong, DAI Yueyue, et al. Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2019, 16(6): 4177-4186. |
[51] | CUI Teng, ZHANG Haijun, DAI Wei. Federated Incremental Transfer Learning Based on Distributed Consensus[J]. Chinese Journal of Computers, 2024, 47(4): 821-841. |
崔腾, 张海军, 代伟. 基于分布共识的联邦增量迁移学习[J]. 计算机学报, 2024, 47(4): 821-841. | |
[52] | MYRZASHOVA R, ALSAMHI S H, SHVETSOV A V, et al. Blockchain Meets Federated Learning in Healthcare: A Systematic Review with Challenges and Opportunities[J]. IEEE Internet of Things, 2023, 10(16): 14418-14437. |
[53] | SINGH S, RATHORE S, ALFARRAJ O, et al. A Framework for Privacy-Preservation of IoT Healthcare Data Using Federated Learning and Blockchain Technology[J]. Future Generation Computer Systems, 2022, 129: 380-388. |
[54] | AICH S, SINAI N K, KUMAR S, et al. Protecting Personal Healthcare Record Using Blockchain & Federated Learning Technologies[C]// IEEE. 24th International Conference on Advanced Communication Technology. New York: IEEE, 2022: 109-112. |
[55] | CHANG Yuxia, FANG Chen, SUN Wenzhou. A Blockchain-Based Federated Learning Method for Smart Healthcare[EB/OL]. (2021-11-24) [2024-04-30]. https://doi.org/10.1155/2021/4376418. |
[56] | LIU Yuan, YU Wangyuan, AI Zhengpeng, et al. A Blockchain-Empowered Federated Learning in Healthcare-Based Cyber Physical Systems[J]. IEEE Transactions on Network Science and Engineering, 2022, 10(5): 2685-2696. |
[57] | ZHAO Yang, ZHAO Jun, JIANG Linshan, et al. Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices[J]. IEEE Internet of Things Journal, 2020, 8(3): 1817-1829. |
[58] | ISSA W, MOUSTAFA N, TURNBULL B, et al. Blockchain-Based Federated Learning for Securing Internet of Things: A Comprehensive Survey[J]. ACM Computing Surveys, 2023, 55(9): 1-43. |
[59] | YANG Ruizhe, ZHAO Tonghui, YU F R, et al. Blockchain-Based Federated Learning with Enhanced Privacy and Security Using Homomorphic Encryption and Reputation[J]. IEEE Internet of Things, 2024, 11(12): 21674-21688. |
[60] | JAVED A R, HASSAN M A, SHAHZAD F, et al. Integration of Blockchain Technology and Federated Learning in Vehicular (iot) Networks: A Comprehensive Survey[EB/OL]. (2022-06-10)[2024-04-30]. https://doi.org/10.3390/s22124394. |
[61] | OTOUM S, RIDHAWI I, MOUFTAH H T. Blockchain-Supported Federated Learning for Trustworthy Vehicular Networks[C]//IEEE. Global Communications Conference. New York: IEEE, 2020: 1-6. |
[62] | MALIK J A. Next-Generation Protection: Leveraging Federated Learning and Blockchain for Intrusion Detection in Smart Vehicle Network[J]. Power System Technology, 2024, 48(1): 931-952. |
[63] | ASAD M, SHAUKAT S, JAVANMARDI E, et al. Secure and Efficient Blockchain-Based Federated Learning Approach for VANETs[J]. IEEE Internet of Things, 2023, 11(5): 9047-9055. |
[64] | FENG Chaosheng, LIU Bin, YU Keping, et al. Blockchain-Empowered Decentralized Horizontal Federated Learning for 5G-Enabled UAVs[J]. IEEE Transactions on Industrial Informatics, 2021, 18(5): 3582-3592. |
[65] | ABUNADI I, ALTHOBAITI M M, AL-WESABI F N, et al. Federated Learning with Blockchain Assisted Image Classification for Clustered UAV Networks[J]. Computers, Materials & Continua, 2022, 72: 1195-1212. |
[66] | ABDEL B M, MOUSTAFA N, HAWASH H, et al. Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(3): 2523-2537. |
[67] | MOULAHI T, JABBAR R, ALABDULATIF A, et al. Privacy-Preserving Federated Learning Cyber-Threat Detection for Intelligent Transport Systems with Blockchain-Based Security[J]. (2022-07-24)[2024-04-30]. https://doi.org/10.1111/exsy.13103. |
[68] | POKHREL S R. Federated Learning Meets Blockchain at 6G Edge: A Drone-Assisted Networking for Disaster Response[C]// ACM. 2nd MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond. New York: ACM, 2020: 49-54. |
[69] | PRIYA J C, NANTHAKUMAR G, CHOUDHURY T, et al. 6G-DeFLI: Enhanced Quality-of-Services Using Distributed Hash Table and Blockchain-Enabled Federated Learning Approach in 6G IoT Networks[J]. Wireless Networks, 2024, 5: 1-15. |
[70] | SARASWAT D, VERMA A, BHATTACHARYA P, et al. Blockchain-Based Federated Learning in UAVs Beyond 5G Networks: A Solution Taxonomy and Future Directions[J]. IEEE Access, 2022, 10: 33154-33182. |
[71] | NGUYEN D C, HOSSEINALIPOUR S, LOVE D J, et al. Latency Optimization for Blockchain-Empowered Federated Learning in Multi-Server Edge Computing[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3373-3390. |
[72] | FAN Sizheng, ZHANG Hongbo, ZENG Yuchen, et al. Hybrid Blockchain-Based Resource Trading System for Federated Learning in Edge Computing[J]. IEEE Internet of Things, 2020, 8(4): 2252-2264. |
[73] | NGUYEN T A, KALIAPPAN V K, JEON S, et al. Blockchain Empowered Federated Learning with Edge Computing for Digital Twin Systems in Urban Air Mobility[C]// Springer. Asia-Pacific International Symposium on Aerospace Technology. Heiderberg: Springer, 2021: 935-950. |
[74] | QU Youyang, GAO Longxiang, LUAN T H, et al. Decentralized Privacy Using Blockchain-Enabled Federated Learning in Fog Computing[J]. IEEE Internet of Things, 2020, 7(6): 5171-5183. |
[75] | BAUCAS M J, SPACHOS P, PLATANIOTIS K N. Federated Learning and Blockchain-Enabled Fog-IoT Platform for Wearables in Predictive Healthcare[J]. IEEE Transactions on Computational Social Systems, 2023, 10(4): 1732-1741. |
[76] | QU Youyang, POKHREL S R, GARG S, et al. A Blockchained Federated Learning Framework for Cognitive Computing in Industry 4.0 Networks[J]. IEEE Transactions on Industrial Informatics, 2020, 17(4): 2964-2973. |
[77] | KUMAR R, KHAN A A, KUMAR J, et al. Blockchain Federated Learning and Deep Learning Models for COVID-19 Detection Using CT Imaging[J]. IEEE Sensors Journal, 2021, 21(14): 16301-16314. |
[78] | REHMAN M H, SALAH K, DAMIANI E, et al. Towards Blockchain-based Reputation-Aware Federated Learning[C]//IEEE. Conference on Computer Communications Workshops. New York: IEEE, 2020: 183-188. |
[1] | YU Lisu, LI Biao, YAO Yuanzhi, WEN Jiajin, LI Zipeng, WANG Zhen. Performance Optimization of Blockchain-Assisted Unmanned Aerial Vehicle Mobile Edge Computing System [J]. Netinfo Security, 2024, 24(9): 1432-1443. |
[2] | GUO Qian, ZHAO Jin, GUO Yi. Hierarchical Clustering Federated Learning Framework for Personalized Privacy-Preserving [J]. Netinfo Security, 2024, 24(8): 1196-1209. |
[3] | LYU Qiuyun, ZHOU Lingfei, REN Yizhi, ZHOU Shifei, SHENG Chunjie. A Lifecycle-Manageable Public Data Sharing Scheme [J]. Netinfo Security, 2024, 24(8): 1291-1305. |
[4] | ZHANG Jiwei, WANG Wenjun, NIU Shaozhang, GUO Xiangkuo. Blockchain Scaling Solutions: ZK-Rollup Review [J]. Netinfo Security, 2024, 24(7): 1027-1037. |
[5] | GUO Rui, YANG Xin, WANG Junming. Verifiable and Revocable Attribute Encryption Scheme Based on Blockchain [J]. Netinfo Security, 2024, 24(6): 863-878. |
[6] | LING Zhi, YANG Ming, YU Jiangyin. Research on Power Security Trading Platform Based on IPFS and Blockchain Technology [J]. Netinfo Security, 2024, 24(6): 968-976. |
[7] | TIAN Zhao, NIU Yajie, SHE Wei, LIU Wei. A Reputation Evaluation Method for Vehicle Nodes in V2X [J]. Netinfo Security, 2024, 24(5): 719-731. |
[8] | SHI Runhua, YANG Jingyi, WANG Pengbo, LIU Huawei. Online/Off line Cross-Domain Identity Authentication Scheme Based on Blockchain in Vehicle to Grid [J]. Netinfo Security, 2024, 24(4): 587-601. |
[9] | HU Haiyang, LIU Chang, WANG Dong, WEI Xu. Clean Energy Data Traceability Mechanism Based on Blockchain [J]. Netinfo Security, 2024, 24(4): 626-639. |
[10] | QI Han, WANG Jingtong, ABDULLAH Gani, GONG Changqing. Robustness of Variational Quantum Convolutional Neural Networks Based on Random Quantum Layers [J]. Netinfo Security, 2024, 24(3): 363-373. |
[11] | XUE Mingzhu, HU Liang, WANG Ming, WANG Feng. TAP Rule Processing System Based on Federated Learning and Blockchain Technology [J]. Netinfo Security, 2024, 24(3): 473-485. |
[12] | FENG Guangsheng, JIANG Shunpeng, HU Xianlang, MA Mingyu. New Research Progress on Intrusion Detection Techniques for the Internet of Things [J]. Netinfo Security, 2024, 24(2): 167-178. |
[13] | ZHAI Peng, HE Jingsha, ZHANG Yu. An Identity Authentication Method Based on SM9 and Blockchain in the IoT Environment [J]. Netinfo Security, 2024, 24(2): 179-187. |
[14] | HE Yefeng, QUAN Jiahui, LIU Yan. A Location Privacy Protection Scheme Based on Hybrid Blockchain [J]. Netinfo Security, 2024, 24(2): 229-238. |
[15] | LIN Yihang, ZHOU Pengyuan, WU Zhiqian, LIAO Yong. Federated Learning Backdoor Defense Method Based on Trigger Inversion [J]. Netinfo Security, 2024, 24(2): 262-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||