Netinfo Security ›› 2023, Vol. 23 ›› Issue (4): 90-101.doi: 10.3969/j.issn.1671-1122.2023.04.010
Previous Articles Next Articles
Received:
2022-12-10
Online:
2023-04-10
Published:
2023-04-18
Contact:
SHI Runhua
E-mail:rhshi@ncepu.edu.cn
CLC Number:
LIU Changjie, SHI Runhua. A Smart Grid Intrusion Detection Model for Secure and Efficient Federated Learning[J]. Netinfo Security, 2023, 23(4): 90-101.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.04.010
标签 类型 | 标签描述 | 包含的具体攻击类型 | 训练集 | 测试集 |
---|---|---|---|---|
Normal | 正常流量数据 | Normal | 67343 | 9711 |
DoS | 拒绝服务攻击 | neptune、back、land、pod、teardrop、smurf | 45927 | 5741 |
Probe | 端口监视或扫描活动 | nmap、ipsweep、satan、portsweep | 11656 | 1106 |
R2L | 来自远程主机的未授权非法访问 | imap、ftp_write、warezmaster、warezclient、multihop、guess_password、phf、spy | 995 | 2199 |
U2R | 未授权的本地超级用户特权非法访问 | buffer_overflow、loadmodule、rootkit、perl | 52 | 37 |
[1] | FARHANGI H. The Path of the Smart Grid[J]. IEEE Power and Energy Magazine, 2009, 8(1): 18-28. |
[2] | TAN Song, DE D, SONG Wenzhan, et al. Survey of Security Advances in Smart Grid: A Data Driven Approach[J]. IEEE Communications Surveys & Tutorials, 2016, 19(1): 397-422. |
[3] | SONG Chuanhe, SUN Yingying, HAN Guangjie, et al. Intrusion Detection Based on Hybrid Classifiers for Smart Grid[EB/OL]. (2021-06-06)[2022-08-30]. https://doi.org/10.1016/j.compeleceng.2021.107212. |
[4] |
SINIOSOGLOU I, RADOGLOU-GRAMMATIKIS P, EFST-ATHOPOULOS G, et al. A Unified Deep Learning Anomaly Detection and Classification Approach for Smart Grid Environments[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1137-1151.
doi: 10.1109/TNSM.2021.3078381 URL |
[5] | KHAN S, KIFAYAT K, KASHIF BASHIR A, et al. Intelligent Intrusion Detection System in Smart Grid Using Computational Intelligence and Machine Learning[EB/OL]. (2020-08-03)[2022-08-30]. https://onlinelibrary.wiley.com/doi/10.1002/ett.4062. |
[6] |
LIANG Wei, LI K C, LONG Jing, et al. An Industrial Network Intrusion Detection Algorithm Based on Multifeature Data Clustering Optimization Model[J]. IEEE Transactions on Industrial Informatics, 2019, 16(3): 2063-2071.
doi: 10.1109/TII.9424 URL |
[7] | NAZIR A, KHAN R A. A Novel Combinatorial Optimization Based Feature Selection Method for Network Intrusion Detection[EB/OL]. (2020-12-31)[2022-08-30]. https://doi.org/10.1016/j.cose.2020.102164. |
[8] | LIU Jingmei, GAO Yuanbo, HU Fengjie. A Fast Network Intrusion Detection System Using Adaptive Synthetic Oversampling and LightGBM[EB/OL]. (2021-06-30)[2022-08-30]. https://doi.org/10.1016/j.cose.2021.102289. |
[9] | MELIS L, SONG Congzheng, CRISTOFARO D E, et al. Exploiting Unintended Feature Leakage in Collaborative Learning[C]// IEEE.2019 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2019: 691-706. |
[10] | KONEČNÝ J, Mcmahan H B, YU F X, et al. Federated Learning: Strategies for Improving Communication Efficiency[EB/OL]. (2017-10-30)[2022-08-30]. https://doi.org/10.48550/arXiv.1610.05492. |
[11] |
LI Beibei, WU Yuhao, SONG Jiarui, et al. DeepFed: Federated Deep Learning for Intrusion Detection in Industrial Cyber-Physical Systems[J]. IEEE Transactions on Industrial Informatics, 2020, 17(8): 5615-5624.
doi: 10.1109/TII.2020.3023430 URL |
[12] |
SUN C, CARDENAS D J S, HAHN A, et al. Intrusion Detection for Cybersecurity of Smart Meters[J]. IEEE Transactions on Smart Grid, 2020, 12(1): 612-622.
doi: 10.1109/TSG.5165411 URL |
[13] |
SHONE N, NGOC T N, PHAI V D, et al. A Deep Learning Approach to Network Intrusion Detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1): 41-50.
doi: 10.1109/TETCI.2017.2772792 URL |
[14] |
KUKKALA V K, THIRULOGA S V, PASRICHA S. Indra: Intrusion Detection Using Recurrent Autoencoders in Automotive Embedded Systems[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(11): 3698-3710.
doi: 10.1109/TCAD.43 URL |
[15] |
UPADHYAY D, MANERO J, ZAMAN M, et al. Gradient Boosting Feature Selection with Machine Learning Classifiers for Intrusion Detection on Power Grids[J]. IEEE Transactions on Network and Service Management, 2020, 18(1): 1104-1116.
doi: 10.1109/TNSM.4275028 URL |
[16] |
LI Fangyu, LI Qi, ZHANG Jinan, et al. Detection and Diagnosis of Data Integrity Attacks in Solar Farms Based on Multilayer Long Short-Term Memory Network[J]. IEEE Transactions on Power Electronics, 2020, 36(3): 2495-2498.
doi: 10.1109/TPEL.63 URL |
[17] |
ISMAIL M, SHAABAN M F, NAIDU M, et al. Deep Learning Detection of Electricity Theft Cyber-Attacks in Renewable Distributed Generation[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3428-3437.
doi: 10.1109/TSG.5165411 URL |
[18] | IMRANA Y, XIANG Yanping, ALI L, et al. A Bidirectional LSTM Deep Learning Approach for Intrusion Detection[EB/OL]. (2021-12-15)[2022-08-30]. https://doi.org/10.1016/j.eswa.2021.115524. |
[19] | GE Mengmeng, SYED N F, FU Xiping, et al. Towards a Deep Learning-Driven Intrusion Detection Approach for Internet of Things[EB/OL]. (2021-02-26)[2022-08-30]. https://doi.org/10.1016/j.comnet.2020.107784. |
[20] | NISHIO T, YONETANI R. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge[C]// IEEE. 2019 IEEE International Conference on Communications (ICC2019). New York: IEEE, 2019: 1-7. |
[21] | WANG Rong, MA Chunguang, WU Peng. An Intrusion Detection Method Based on Federated Learning and Convolutional Neural Network[J]. Netinfo Security, 2020, 20(4): 47-54. |
王蓉, 马春光, 武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4): 47-54. | |
[22] |
RAHMAN S A, TOUT H, TALHI C, et al. Internet of Things Intrusion Detection: Centralized, On-Device, or Federated Learning?[J]. IEEE Network, 2020, 34(6): 310-317.
doi: 10.1109/MNET.65 URL |
[23] | ZHAO Ruijie, YIN Yue, SHI Yong, et al. Intelligent Intrusion Detection Based on Federated Learning Aided Long Short-Term Memory[EB/OL]. (2020-10-26)[2022-08-30]. https://doi.org/10.1016/j.phycom.2020.101157. |
[24] |
ABDULRAHMAN S, TOUT H, MOURAD A, et al. FedMCCS: Multicriteria Client Selection Model for Optimal IoT Federated Learning[J]. IEEE Internet of Things Journal, 2020, 8(6): 4723-4735.
doi: 10.1109/JIoT.6488907 URL |
[25] |
LI Beiei, WU Yuhao, SONG Jiarui, et al. DeepFed: Federated Deep Learning for Intrusion Detection in Industrial Cyber-Physical Systems[J]. IEEE Transactions on Industrial Informatics, 2020, 17(8): 5615-5624.
doi: 10.1109/TII.2020.3023430 URL |
[26] | MAN Dapeng, ZENG Fanyi, YANG Wu, et al. Intelligent Intrusion Detection Based on Federated Learning for Edge-Assisted Internet of Things[EB/OL]. (2020-10-05)[2022-08-30]. https://doi.org/10.1155/2021/9361348. |
[27] | LI Tian, SAHU A K, TALWALKAR A, et al. Federated Learning: Challenges, Methods, and Future Directions[J]. IEEE Signal Processing magazine, 2020, 37(3): 50-60. |
[28] | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[EB/OL]. (2017-02-28)[2022-08-30]. https://doi.org/10.48550/arXiv.1602.05629. |
[29] | ZHANG Tong. Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algorithms[EB/OL]. (2004-06-08)[2022-08-30]. https://hdl.handle.net/1783.1/98398. |
[30] | PAILLIER P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[C]// Springer. International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 1999: 223-238. |
[31] | MELIS L, SONG Congzheng, CRISTOFARO E D, et al. Exploiting Unintended Feature Leakage in Collaborative Learning[C]// IEEE. 2019 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2019: 691-706. |
[32] |
WANG Liwei, ZHANG Yan, FENG Jufu. On the Euclidean Distance of Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1334-1339.
pmid: 16119271 |
[33] | SITIKHU P, PAHI K, THAPA P, et al. A Comparison of Semantic Similarity Methods for Maximum Human Interpretability[C]// IEEE. 2019 Artificial Intelligence for Transforming Business and Society (AITB). New York: IEEE, 2019: 1-4. |
[34] | ASAD M, MOUSTAFA A, ASLAM M. CEEP-FL: A Comprehensive Approach for Communication Efficiency and Enhanced Privacy in Federated Learning[EB/OL]. (2021-06-08)[2022-08-30]. https://doi.org/10.1016/j.asoc.2021.107235. |
[35] |
WANG Tian, LIU Yan, ZHENG Xi, et al. Edge-Based Communication Optimization for Distributed Federated Learning[J]. IEEE Transactions on Network Science and Engineering, 2021, 9(4): 2015-2024.
doi: 10.1109/TNSE.2021.3083263 URL |
[36] | HAO Shaochen, WEI Zizuan, MA Yao, et al. Network Intrusion Detection Model Based on Efficient Federation Learning Algorithm[EB/OL]. (2022-06-01)[2022-08-30]. http://kns.cnki.net/kcms/detail/51.1307.TP.20220531.1833.011.html. |
郝劭辰, 卫孜钻, 马垚, 等. 基于高效联邦学习算法的网络入侵检测模型[EB/OL]. (2022-06-01)[2022-08-30]. http://kns.cnki.net/kcms/detail/51.1307.TP.20220531.1833.011.html. |
[1] | JIN Zhigang, LIU Kai, WU Xiaodong. A Review of IDS Research in Smart Grid AMI Field [J]. Netinfo Security, 2023, 23(1): 1-8. |
[2] | WANG Huazhong, TIAN Zilei. Intrusion Detection Method of ICS Based on Improved CGAN Algorithm [J]. Netinfo Security, 2023, 23(1): 36-43. |
[3] | LIU Xiangyu, LU Tianliang, DU Yanhui, WANG Jingxiang. Lightweight IoT Intrusion Detection Method Based on Feature Selection [J]. Netinfo Security, 2023, 23(1): 66-72. |
[4] | LIU Xin, LI Yunyi, WANG Miao. A Lightweight Authentication Protocol Based on Confidential Computing for Federated Learning Nodes [J]. Netinfo Security, 2022, 22(7): 37-45. |
[5] | ZHANG Xinglan, FU Juanjuan. Auxiliary Entropy Reduction Based Intrusion Detection Model for Ordinary Differential Equations [J]. Netinfo Security, 2022, 22(6): 1-8. |
[6] | WANG Haoyang, LI Wei, PENG Siwei, QIN Yuanqing. An Intrusion Detection Method of Train Control System Based on Ensemble Learning [J]. Netinfo Security, 2022, 22(5): 46-53. |
[7] | LYU Guohua, HU Xuexian, YANG Ming, XU Min. Ship AIS Trajectory Classification Algorithm Based on Federated Random Forest [J]. Netinfo Security, 2022, 22(4): 67-76. |
[8] | FENG Jingyu, SHI Yifei, WANG Teng. Crowd Spectrum Sensing Reinforcement Scheme Against Primary-secondary Collusive Attack in Smart Grid [J]. Netinfo Security, 2022, 22(3): 1-9. |
[9] | YIN Ying, ZHOU Zhihong, YAO Lihong. Research on LSTM-Based CAN Intrusion Detection Model [J]. Netinfo Security, 2022, 22(12): 57-66. |
[10] | BAI Hongpeng, DENG Dongxu, XU Guangquan, ZHOU Dexiang. Research on Intrusion Detection Mechanism Based on Federated Learning [J]. Netinfo Security, 2022, 22(1): 46-54. |
[11] | XU Shuo, ZHANG Rui, XIA Hui. Privacy-preserving Strategies for Federated Learning Based on Data Attribute Modification [J]. Netinfo Security, 2022, 22(1): 55-63. |
[12] | HE Hongyan, HUANG Guoyan, ZHANG Bing, JIA Damiao. Intrusion Detection Model Based on Extra Trees-recursive Feature Elimination and LightGBM [J]. Netinfo Security, 2022, 22(1): 64-71. |
[13] | LIU Shuo, ZHANG Xinglan. Intrusion Detection System Based on Dual Attention [J]. Netinfo Security, 2022, 22(1): 80-86. |
[14] | LU Honglin, WANG Liming, YANG Jing. A New Parameter Masking Federated Learning Privacy Preserving Scheme [J]. Netinfo Security, 2021, 21(8): 26-34. |
[15] | LI Qun, DONG Jiahan, GUAN Zhitao, WANG Chao. A Clustering and Classification-based Malicious Attack Detection Method for Internet of Things [J]. Netinfo Security, 2021, 21(8): 82-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||