Netinfo Security ›› 2023, Vol. 23 ›› Issue (1): 66-72.doi: 10.3969/j.issn.1671-1122.2023.01.008
Previous Articles Next Articles
LIU Xiangyu, LU Tianliang, DU Yanhui(), WANG Jingxiang
Received:
2022-11-21
Online:
2023-01-10
Published:
2023-01-19
Contact:
DU Yanhui
E-mail:duyanhui@ppsuc.edu.cn
CLC Number:
LIU Xiangyu, LU Tianliang, DU Yanhui, WANG Jingxiang. Lightweight IoT Intrusion Detection Method Based on Feature Selection[J]. Netinfo Security, 2023, 23(1): 66-72.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.01.008
特征 | 描述 | |
---|---|---|
1 | uid | 流的唯一ID |
2 | id.orig_h | 源IP地址 |
3 | id.orig_p | 源端口号 |
4 | id.resp_h | 目的IP地址 |
5 | id.resp_p | 目的端口号 |
6 | proto | 协议 |
7 | service | dhcp, dns, http, ssh |
8 | duration | 流的持续时间 |
9 | orig_bytes | 源发送载荷字节数 |
10 | resp_bytes | 目的发送载荷字节数 |
11 | conn_state | 连接状态 |
12 | local_orig | 本地源地址标志位为T 远端源地址标志位为F |
13 | local_resp | 本地目的地址标志位为T 远端目的地址标志位为F |
14 | missed_bytes | 丢失的字节数 |
15 | orig_pkts | 源地址发送的包数量 |
16 | orig_ip_bytes | 源地址发送的IP层字节数 |
17 | resp_pkts | 目的地址发送的包数量 |
18 | resp_ip_bytes | 目的地址发送的IP层字节数 |
标签 | 原始 | 去重后 |
---|---|---|
Benign | 30860691 | 115914 |
DDoS | 19538713 | 1643282 |
PartOfAHorizontalPortScan | 213852924 | 79652 |
Okiru | 60990708 | 14994 |
C&C-Heartbeat | 33673 | 10239 |
C&C | 21995 | 8940 |
Attack | 9398 | 9366 |
C&C-PartOfAHorizontalPortScan | 888 | 327 |
C&C-HeartBeat-Attack | 834 | 743 |
C&C-FileDownload | 53 | 53 |
C&C-Torii | 30 | 17 |
FileDownload | 18 | 18 |
C&C-HeartBeat-FileDownload | 11 | 11 |
PartOfAHorizontalPortScan-Attack | 5 | 5 |
Okiru-Attack | 3 | 3 |
C&C-Mirai | 2 | 2 |
proto | service | duration | orig_bytes | resp_bytes | conn_state | missed_bytes | orig_pkts | orig_ip_butes | resp_pkts | resp_ip_bytes | |
---|---|---|---|---|---|---|---|---|---|---|---|
proto | 1.00 | 0.13 | 0.36 | -0.04 | 0.00 | -0.56 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 |
service | 0.13 | 1.00 | 0.00 | -0.01 | 0.00 | -0.08 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 |
duration | 0.36 | 0.00 | 1.00 | 0.13 | 0.00 | -0.17 | 0.00 | 0.06 | 0.05 | 0.03 | 0.00 |
orig_bytes | -0.04 | -0.01 | 0.13 | 1.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
resp_bytes | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.01 |
conn_state | -0.56 | -0.08 | -0.17 | 0.33 | 0.00 | 1.00 | 0.00 | -0.01 | -0.01 | 0.00 | 0.00 |
missed_bytes | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
orig _bytes | 0.01 | 0.00 | 0.06 | 0.00 | 0.00 | -0.01 | 0.00 | 1.00 | 0.81 | 0.00 | 0.00 |
orig_ip_bytes | 0.01 | 0.00 | 0.05 | 0.00 | 0.00 | -0.01 | 0.00 | 0.81 | 1.00 | 0.00 | 0.00 |
resp_bytes | 0.00 | 0.02 | 0.03 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 |
resp_ip_bytes | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 |
[1] | KOLIAS C, KAMBOURAKIS G, STAVROU A, et al. Ddos in the IoT: Mirai and Other Botnets[J]. Computer, 2017, 50(7): 80-84. |
[2] | LIU Hongyu, BO Lang. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey[EB/OL]. (2019-10-17)[2022-10-01]. https://pdfs.semanticscholar.org/4341/c20c517117c49f0ae37b57790c8b2217eb7a.pdf?_ga=2.57188010.1035881027.1670984266-291098582.1670984266. |
[3] | AMOURI A, ALAPARTHY V T, MORGERA S D. Cross Layer-Based Intrusion Detection Based on Network Behavior for IoT[C]// IEEE. 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON). New York: IEEE, 2018: 1-4. |
[4] |
SIVANATHAN A, GHARAKHEILI H H, SIVARAMAN V. Detecting Behavioral Change of Iot Devices Using Clustering-Based Network Traffic Modeling[J]. IEEE Internet of Things Journal, 2020, 7(8): 7295-7309.
doi: 10.1109/JIOT.2020.2984030 URL |
[5] | HASAN M, ISLAM M M, ZARIF M I I, et al. Attack and Anomaly Detection in IoT Sensors in IoT Sites Using Machine Learning Approaches[EB/OL]. (2019-05-30)[2022-10-01]. https://www.sciencedirect.com/science/article/pii/S2542660519300241. |
[6] | PAHL M O, AUBET F X. All Eyes on You: Distributed Multi-Dimensional IoT Microservice Anomaly Detection[C]// IEEE. 2018 14th International Conference on Network and Service Management (CNSM). New York: IEEE, 2018: 72-80. |
[7] | LIMA FILHO F S D, SILVEIRA F A, DE MEDEIROS BRITO JUNIOR A, et al. Smart Detection: An Online Approach for DoS/DDoS Attack Detection Using Machine Learning[J]. Security and Communication Networks, 2019, 12: 1-15. |
[8] | SHARAFALDIN I, HABIBI LASHKARI A, GHORBANI A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization[C]// ICISSP. International Conference on Information Systems Security and Privacy. Funchal: ICISSP, 2018: 108-116. |
[9] | RADFORD B J, RICHARDSON B D, DAVIS S E. Sequence Aggregation Rules for Anomaly Detection in Computer Network Traffic[EB/OL]. (2018-05-14)[2022-10-01]. https://arxiv.org/pdf/1805.03735.pdf. |
[10] | EKTEFA M, MEMAR S, SIDI F, et al. Intrusion Detection Using Data Mining Techniques[C]// IEEE. 2010 International Conference on Information Retrieval & Knowledge Management (CAMP). New York: IEEE, 2010: 200-203. |
[11] |
PAJOUH H H, JAVIDAN R, KHAYAMI R, et al. A Two-Layer Dimension Reduction and Two-Tier Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone Networks[J]. IEEE Transactions on Emerging Topics in Computing, 2019, 7(2): 314-323.
doi: 10.1109/TETC.2016.2633228 URL |
[12] |
AHMAD R, ALSMADI I, ALHAMDANI W, et al. Towards Building Data Analytics Benchmarks for IoT Intrusion Detection[J]. Cluster Computing, 2021, 25: 2125-2141.
doi: 10.1007/s10586-021-03388-z URL |
[13] | ALHOWAIDE A, ALSMADI I, TANG J. Ensemble Detection Model for IoT Ids[EB/OL]. (2021-12-26)[2022-10-01]. https://www.sciencedirect.com/science/article/abs/pii/S2542660521000792. |
[14] | VATCHEVA K P, LEE M, MCCORMICK J B, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies[EB/OL]. (2016-03-07)[2022-10-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888898/. |
[15] | O’BRIEN R M. A Caution Regarding Rules of Thumb for Variance Inflation Factors[J]. Quality & Quantity, 2007, 41(5): 673-690. |
[16] | CIESLAK D A, CHAWLA N V, STRIEGEL A. Combating Imbalance in Network Intrusion Datasets[C]// IEEE. 2006 IEEE International Conference on Granular Computing. New York: IEEE, 2006: 732-737. |
[17] |
CHAWLA N V, BOWYER K W, HALL L O, et al. Smote: Synthetic Minority Over-Sampling Technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
doi: 10.1613/jair.953 URL |
[18] | SEBASTIAN G, AGUSTIN P, MARIA JOSE E. Iot-23: A Labeled Dataset with Malicious and Benign IoT Network Traffic[EB/OL]. (2020-01-20)[2022-10-01]. https://www.stratosphereips.org/datasets-iot23. . |
[1] | HU Zhijie, CHEN Xingshu, YUAN Daohua, ZHENG Tao. Static Detection Method of Android Adware Based on Improved Random Forest Algorithm [J]. Netinfo Security, 2023, 23(2): 85-95. |
[2] | JIN Zhigang, LIU Kai, WU Xiaodong. A Review of IDS Research in Smart Grid AMI Field [J]. Netinfo Security, 2023, 23(1): 1-8. |
[3] | WANG Huazhong, TIAN Zilei. Intrusion Detection Method of ICS Based on Improved CGAN Algorithm [J]. Netinfo Security, 2023, 23(1): 36-43. |
[4] | ZHANG Xuewang, LIU Yufan. Identity Traceable Anonymous Authentication Scheme for Nodes in the Perception Layer of IoT [J]. Netinfo Security, 2022, 22(9): 55-62. |
[5] | QIN Baodong, YU Peihang, ZHENG Dong. Decision Tree Classification Model Based on Double Trapdoor Homomorphic Encryption [J]. Netinfo Security, 2022, 22(7): 9-17. |
[6] | ZHANG Xinglan, FU Juanjuan. Auxiliary Entropy Reduction Based Intrusion Detection Model for Ordinary Differential Equations [J]. Netinfo Security, 2022, 22(6): 1-8. |
[7] | ZHAO Hong, LI Shan, ZUO Peiliang, WEI Zhanzhen. Security Resource Allocation Method for Internet of Things Based on Reinforcement Learning [J]. Netinfo Security, 2022, 22(6): 44-52. |
[8] | WANG Juan, WANG Yunru, WENG Bin, GONG Jiaxin. Survey on Application of Machine Learning in Disassembly on x86 Binaries [J]. Netinfo Security, 2022, 22(6): 9-25. |
[9] | WANG Haoyang, LI Wei, PENG Siwei, QIN Yuanqing. An Intrusion Detection Method of Train Control System Based on Ensemble Learning [J]. Netinfo Security, 2022, 22(5): 46-53. |
[10] | YIN Ying, ZHOU Zhihong, YAO Lihong. Research on LSTM-Based CAN Intrusion Detection Model [J]. Netinfo Security, 2022, 22(12): 57-66. |
[11] | NIU Yinuo, ZHANG Yifei, GAO Neng, MA Cunqing. Design of Log-Based Anomaly Detection System Based on Temporal and Logical Relationship [J]. Netinfo Security, 2022, 22(11): 1-6. |
[12] | HAN Li, SONG Jixiang, SUN Shimin. Moving Target Defense Mechanism Research Based on Device Address in SD-IoT [J]. Netinfo Security, 2022, 22(11): 36-46. |
[13] | DUAN Xiaoyi, LI You, LINGHU Yunxing, HU Ronglei. Research on the Method of Side Channel Attack Based on RF Algorithm [J]. Netinfo Security, 2022, 22(1): 19-26. |
[14] | LI Tong, REN Shuai, WANG Gang, MENG Qingyu. Cloud-edge-device Collaborative Integrity Verification Scheme Based on Chameleon Authentication Tree for Streaming Data [J]. Netinfo Security, 2022, 22(1): 37-45. |
[15] | BAI Hongpeng, DENG Dongxu, XU Guangquan, ZHOU Dexiang. Research on Intrusion Detection Mechanism Based on Federated Learning [J]. Netinfo Security, 2022, 22(1): 46-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||