Netinfo Security ›› 2022, Vol. 22 ›› Issue (12): 57-66.doi: 10.3969/j.issn.1671-1122.2022.12.007
Previous Articles Next Articles
YIN Ying1,2(), ZHOU Zhihong1,2, YAO Lihong3
Received:
2022-10-09
Online:
2022-12-10
Published:
2022-12-30
Contact:
YIN Ying
E-mail:yyin@sjtu.edu.cn
CLC Number:
YIN Ying, ZHOU Zhihong, YAO Lihong. Research on LSTM-Based CAN Intrusion Detection Model[J]. Netinfo Security, 2022, 22(12): 57-66.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2022.12.007
[1] | Upstream. Upstream’s 2022 Global Automotive Cybersecurity Report[EB/OL]. (2022-01-26) [2022-09-08]. https://upstream.auto/2022report/. |
[2] | XIA Ziyan, ZHOU Zhitong, LI Xiang, et al. Feasibility Study on Automobile Electronic Control System of ECU Intrusion and Virus[J]. Netinfo Security, 2014, 14(9): 193-195. |
夏子焱, 周之童, 李响, 等. 汽车ECU电控系统入侵与汽车病毒编写的可行性研究[J]. 信息网络安全, 2014, 14(9):193-195. | |
[3] | FENG Cong. Research on the Governance and Law Enforcement of Network Security of Intelligent Connected Vehicles[J]. Netinfo Security, 2020(S1):44-47. |
冯聪. 智能网联汽车网络安全问题的治理与执法探索[J]. 信息网络安全, 2020(S1):44-47. | |
[4] | Security Guest. 360 Network Attack and Defense Lab Has Revealed a Second High Risk Vulnerability in a Tesla Vehicle-The Ability to Open the Vehicle Without a Key[EB/OL]. (2015-01-21) [2022-09-08]. https://anyun.org/a/yejiezixun/2015/0129/4460.html. |
安全客. 360网络攻防实验室公布第二例特斯拉高危漏洞—无需钥匙开启车辆[EB/OL].(2015-01-21) [2022-09-08]. https://anyun.org/a/yejiezixun/2015/0129/4460.html. | |
[5] | Tencent Technology. Tencent Cohen Lab Successfully Invaded Tesla Remotely for the First Time in the World[EB/OL]. (2016-09-20) [2022-09-08]. https://news.mydrivers.com/1/500/500287.htm. |
腾讯科技. 腾讯科恩实验室成功远程入侵特斯拉为全球首次[EB/OL].(2016-09-20) [2022-09-08]. https://news.mydrivers.com/1/500/500287.htm. | |
[6] | LI Yilin, YAN Zheng, XIE Haomeng. Survey of Privacy Preservation in VANET[J]. Netinfo Security, 2019, 19(4): 63-72. |
李怡霖, 闫峥, 谢皓萌. 车载自组织网络的隐私保护综述[J]. 信息网络安全, 2019, 19(4):63-72. | |
[7] |
CHOI W, JO H J, WOO S, et al. Identifying ECUs Using Inimitable Characteristics of Signals in Controller Area Networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4757-4770.
doi: 10.1109/TVT.2018.2810232 URL |
[8] | NILSSON D K, LARSON U E, JONSSON E. Efficient in-Vehicle Delayed Data Authentication Based on Compound Message Authentication Codes[C]// IEEE. 2008 IEEE 68th Vehicular Technology Conference. New York: IEEE, 2008: 1-5. |
[9] | HAZEM A, FAHMY H A. LCAP-a Lightweight Can Authentication Protocol for Securing in-Vehicle Networks[EB/OL]. (2012-06-20) [2022-09-08]. http://www.eece.cu.edu.eg/-hfahmy/publish/escar2012.pdf. |
[10] | GMIDEN M, GMIDEN M H, TRABELSI H. An Intrusion Detection Method for Securing in-Vehicle CAN Bus[C]// IEEE. 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). New York: IEEE, 2016: 176-180. |
[11] | MARCHETTI M, STABILI D. Anomaly Detection of CAN Bus Messages through Analysis of ID Sequences[C]// IEEE. 2017 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2017: 1577-1583. |
[12] | MÜTER M, ASAJ N. Entropy-Based Anomaly Detection for in-Vehicle Networks[C]// IEEE. 2011 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2011: 1110-1115. |
[13] | STABILI D, MARCHETTI M, COLAJANNI M. Detecting Attacks to Internal Vehicle Networks through Hamming Distance[C]// IEEE. 2017 AEIT International Annual Conference. New York: IEEE, 2017: 1-6. |
[14] | CHO K T, SHIN K G. Fingerprinting Electronic Control Units for Vehicle Intrusion Detection[C]// USENIX. 25th USENIX Security Symposium (USENIX Security 16). Berkeley:USENIX, 2016: 911-927. |
[15] | SEO E, SONG H M, KIM H K. Gids: GAN Based Intrusion Detection System for in-Vehicle Network[C]// IEEE. 2018 16th Annual Conference on Privacy, Security and Trust (PST). New York: IEEE, 2018: 1-6. |
[16] |
ZHU Konglin, CHEN Zhicheng, PENG Yuyang, et al. Mobile Edge Assisted Literal Multi-Dimensional Anomaly Detection of in-Vehicle Network Using LSTM[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4275-4284.
doi: 10.1109/TVT.2019.2907269 URL |
[17] | GAZDAG A, NEUBRANDT D, BUTTYÁN L, et al. Detection of Injection Attacks in Compressed CAN Traffic Logs[C]// Springer. 2018 Security and Safety Interplay of Intelligent Software Systems. New York: Springer, 2018: 111-124. |
[18] | KANG M J, KANG J W. Intrusion Detection System Using Deep Neural Network for in-Vehicle Network Security[EB/OL]. (2016-06-07) [2022-09-08]. https://pubmed.ncbi.nlm.nih.gov/27271802/. |
[19] | MO Xiuliang, CHEN Pengyuan, WANG Jianing, et al. Anomaly Detection of Vehicle CAN Network Based on Message Content[C]// Springer. International Conference on Security and Privacy in New Computing Environments. New York: Springer, 2019: 96-104. |
[20] | SONG H M, WOO J, KIM H K. In-Vehicle Network Intrusion Detection Using Deep Convolutional Neural Network[EB/OL]. (2019-10-03) [2022-09-08]. https://www.sciencedirect.com/science/article/abs/pii/S2214209619302451. |
[21] |
HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
pmid: 9377276 |
[22] | MALHOTRA P, VIG L, SHROFF G, et al. Long Short Term Memory Networks for Anomaly Detection in Time Series[EB/OL]. (2015-04-22) [2022-09-08]. https://www.researchgate.net/publication/304782562_Long_Short_Term_Memory_Networks_for_Anomaly_Detection_in_Time_Series. |
[23] | MARKOVITZ M, WOOL A. Field Classification, Modeling and Anomaly Detection in Unknown CAN Bus Networks[J]. Vehicular Communications, 2017(9): 43-52. |
[24] | LIU Xin, WANG Jiayin, YANG Haorui, et al. An Internet of Vehicles Authentication Protocol Based on Blockchain and SecGear Framework[J]. Netinfo Security, 2022, 22(1): 27-36. |
刘忻, 王家寅, 杨浩睿, 等. 一种基于区块链和SecGear框架的车联网认证协议[J]. 信息网络安全, 2022, 22(1):27-36. | |
[25] | HCRL. Car Hacking for Intrusion Detection[EB/OL]. (2018-08-01) [2022-09-08]. https://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset. |
[1] | ZHANG Guanghua, LIU Yongsheng, WANG He, YU Naiwen. Smart Contract Vulnerability Detection Scheme Based on BiLSTM and Attention Mechanism [J]. Netinfo Security, 2022, 22(9): 46-54. |
[2] | ZHANG Xinglan, FU Juanjuan. Auxiliary Entropy Reduction Based Intrusion Detection Model for Ordinary Differential Equations [J]. Netinfo Security, 2022, 22(6): 1-8. |
[3] | WANG Haoyang, LI Wei, PENG Siwei, QIN Yuanqing. An Intrusion Detection Method of Train Control System Based on Ensemble Learning [J]. Netinfo Security, 2022, 22(5): 46-53. |
[4] | ZHANG Guanghua, YAN Fengru, ZHANG Dongwen, LIU Xuefeng. Insider Threat Detection Model Based on LSTM-Attention [J]. Netinfo Security, 2022, 22(2): 1-10. |
[5] | SHEN Zhuowei, FAN Linli, HUA Tong, WANG Kexiang. Role Mining Scheme with Abnormal Permission Configuration [J]. Netinfo Security, 2022, 22(11): 7-16. |
[6] | BAI Hongpeng, DENG Dongxu, XU Guangquan, ZHOU Dexiang. Research on Intrusion Detection Mechanism Based on Federated Learning [J]. Netinfo Security, 2022, 22(1): 46-54. |
[7] | HE Hongyan, HUANG Guoyan, ZHANG Bing, JIA Damiao. Intrusion Detection Model Based on Extra Trees-recursive Feature Elimination and LightGBM [J]. Netinfo Security, 2022, 22(1): 64-71. |
[8] | LIU Shuo, ZHANG Xinglan. Intrusion Detection System Based on Dual Attention [J]. Netinfo Security, 2022, 22(1): 80-86. |
[9] | LI Qun, DONG Jiahan, GUAN Zhitao, WANG Chao. A Clustering and Classification-based Malicious Attack Detection Method for Internet of Things [J]. Netinfo Security, 2021, 21(8): 82-90. |
[10] | REN Tao, JIN Ruochen, LUO Yongmei. Network Intrusion Detection Algorithm Integrating Blockchain and Federated Learning [J]. Netinfo Security, 2021, 21(7): 27-34. |
[11] | DU Ye, WANG Zimeng, LI Meihong. Industrial Control Intrusion Detection Method Based on Optimized Kernel Extreme Learning Machine [J]. Netinfo Security, 2021, 21(2): 1-9. |
[12] | WANG Huazhong, CHENG Qi. Research on Intrusion Detection of Industrial Control System Based on Improved Whale Algorithm [J]. Netinfo Security, 2021, 21(2): 53-60. |
[13] | SHEN Yeming, LI Beibei, LIU Xiaojie, OUYANG Yuankai. Research on Active Learning-based Intrusion Detection Approach for Industrial Internet [J]. Netinfo Security, 2021, 21(1): 80-87. |
[14] | LI Qiao, LONG Chun, WEI Jinxia, ZHAO Jing. A Hybrid Model of Intrusion Detection Based on LMDR and CNN [J]. Netinfo Security, 2020, 20(9): 117-121. |
[15] | XU Guotian. Research on K-Nearest Neighbor High Speed Matching Algorithm in Network Intrusion Detection [J]. Netinfo Security, 2020, 20(8): 71-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||