Netinfo Security ›› 2021, Vol. 21 ›› Issue (10): 41-47.doi: 10.3969/j.issn.1671-1122.2021.10.006
Previous Articles Next Articles
Received:
2021-06-17
Online:
2021-10-10
Published:
2021-10-14
Contact:
XU Guotian
E-mail:xu_guo_tian888@163.com
CLC Number:
XU Guotian, SHENG Zhenwei. DGA Malicious Domain Name Detection Method Based on Fusion of CNN and LSTM[J]. Netinfo Security, 2021, 21(10): 41-47.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2021.10.006
[1] |
SINGH M, SINGH M, KAUR S. Detecting Bot-infected Machines Using DNS Fingerprinting[J]. Digital Investigation, 2019, 28(2):14-33.
doi: 10.1016/j.diin.2018.12.005 URL |
[2] | GARCIA S, GRILL M, STIBOREK J, et al. An Empirical Comparison of Botnet Detection Methods[J]. Computers & Security, 2014, 32(45):100-123. |
[3] | ZUO Yuanwei. Research on Malicious Domain Name Detection and Defense Based on Deep Learning and SDN Network[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2020. |
左元威. 基于深度学习和SDN网络的恶意域名检测与防御的研究[D]. 南京:南京邮电大学, 2020. | |
[4] | DRICHEL A, MEYER U, SCHÜPPEN S, et al. Making Use of NXt to Nothing: The Effect of Class Imbalances on DGA Detection Classifiers [C]//ICOSST. Proceedings of the 15th International Conference on Availability, August 12-16, 2020, Lahore, Pakistan. USA: Reliability and Security, 2020: 1-9. |
[5] | FEILY M, SHAHRESTANI A, RAMADASS S. A Survey of Botnet and Botnet Detection [C]//IEEE. Third International Conference on Emerging Security Information, June 18-23, 2009, Athens, Greece. New York: IEEE, 2009: 268-273. |
[6] |
SHARIFNYA R, ABADI M. Dfbotkiller: Domain-flux Botnet Detection Based on the History of Group Activities and Failures in DNS Traffic[J]. Digital Investigation, 2015, 12(5):15-26.
doi: 10.1016/j.diin.2014.11.001 URL |
[7] | ZHOU Yonglin, LI Qingshan, MIAO Qidi, et al. DGA-based Botnet Detection Using DNS Traffic[J]. J. Internet Serv. Inf. Secur., 2013, 3(3/4):116-123. |
[8] | ANTONAKAKIS M, PERDISCI R, NADJI Y, et al. From Throw-away Traffic to Bots: Detecting The Rise of DGA-based Malware [C]//IEEE. 21st USENIX Conference on Security Symposium, Auguest 8-10, 2012, Bellevue, WA, USA. New York: IEEE, 2012: 491-506. |
[9] |
SHI Yong, CHEN Gong, LI Juntao. Malicious Domain Name Detection Based on Extreme Machine Learning[J]. Neural Processing Letters, 2018, 48(3):1347-1357.
doi: 10.1007/s11063-017-9666-7 URL |
[10] | JIANG Hongling, DAI Junwei. DGA Malicious Domain Name Detection Method[J]. Journal of Beijing Information Science and Technology University (Natural Science Edition), 2019, 34(5):45-50. |
蒋鸿玲, 戴俊伟. DGA恶意域名检测方法[J]. 北京信息科技大学学报(自然科学版), 2019, 34(5):45-50. | |
[11] | GU Zhaojun, YANG Wenjin, ZHOU Jingxian. A Small Sample DGA Malicious Domain Name Detection Method Based on Transfer Learning[EB/OL]. http://kns.cnki.net/kcms/detail/11.2127.TP.20200709.0928.008.html,2021-06-11. |
顾兆军, 杨文瑾, 周景贤. 基于迁移学习的小样本DGA恶意域名检测方法[EB/OL]. http://kns.cnki.net/kcms/detail/11.2127.TP.20200709.0928.008.html,2021-06-11. | |
[12] | TOBIYAMA S, YAMAGUCHI Y, SHIMADA H, et al. Malware Detection with Deep Neural Network Using Process Behavior [C]//IEEE. 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), June 10-14, 2016, Atlanta, USA. New York: IEEE, 2016: 577-582. |
[13] | WANG Zhiqiang, LI Shuhao, CHI Yaping, et al. Malicious DGA Domain Name Detection Based on Deep Learning[J]. Computer Engineering and Design, 2021, 42(3):601-606. |
王志强, 李舒豪, 池亚平, 等. 基于深度学习的恶意DGA域名检测[J]. 计算机工程与设计, 2021, 42(3):601-606. | |
[14] |
EBRAHIMI M, SUEN C Y, ORMANDJIEVA O. Detecting Predatory Conversations in Social Media by Deep Convolutional Neural Networks[J]. Digital Investigation, 2016, 18(6):33-49.
doi: 10.1016/j.diin.2016.07.001 URL |
[15] | LE Q, BOYDELL O, MAC N B, et al. Deep Learning at the Shallow End: Malware Classification for Non-domain Experts[J]. Digital Investigation, 2018, 26(9):118-126. |
[16] | ZHANG You, YUAN Hang, WANG Jin, et al. YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction [C]//Association for Computational Linguistics. Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, September 7-11, 2017, Copenhagen, Denmark. USA: Association for Computational Linguistics, 2017: 200-204. |
[17] | ZHOU Kang, WAN Liang, DING Hongwei. Malicious Domain Name Detection Based on AN and LSTM[J]. Computer Engineering and Applications, 2020, 56(4):92-98. |
周康, 万良, 丁红卫. 基于AN和LSTM的恶意域名检测[J]. 计算机工程与应用, 2020, 56(4):92-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||