Netinfo Security ›› 2019, Vol. 19 ›› Issue (3): 1-10.doi: 10.3969/j.issn.1671-1122.2019.03.001
• Orginal Article • Next Articles
Jinghao LIU1, Siping MAO1, Xiaomei FU2
Received:
2018-08-15
Online:
2019-03-19
Published:
2020-05-11
CLC Number:
Jinghao LIU, Siping MAO, Xiaomei FU. Intrusion Detection Model Based on ICA Algorithm and Deep Neural Network[J]. Netinfo Security, 2019, 19(3): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2019.03.001
项目 | U2R | R2L | pobe | normal | DoS | sum |
---|---|---|---|---|---|---|
Tr0 | 42 | 215 | 870 | 19786 | 79119 | 100032 |
Te0 | 10 | 23 | 78 | 1927 | 7969 | 10007 |
Tr1 | 42 | 241 | 883 | 21812 | 87054 | 110032 |
Te1 | 10 | 19 | 90 | 2142 | 8745 | 11006 |
Tr2 | 42 | 269 | 990 | 23595 | 95131 | 120027 |
Te2 | 10 | 28 | 112 | 2283 | 9577 | 12010 |
Tr3 | 42 | 292 | 1117 | 25707 | 102868 | 130026 |
Te3 | 10 | 28 | 92 | 2578 | 10301 | 13009 |
Tr4 | 42 | 358 | 1160 | 27397 | 111065 | 140022 |
Te4 | 10 | 26 | 133 | 2815 | 11025 | 14009 |
Tr5 | 42 | 371 | 1231 | 29521 | 118855 | 150020 |
Te5 | 10 | 32 | 125 | 2955 | 11885 | 15007 |
Tr6 | 42 | 355 | 1361 | 31470 | 126794 | 160022 |
Te6 | 10 | 32 | 125 | 3239 | 12602 | 16008 |
Tr7 | 42 | 372 | 1419 | 33394 | 134795 | 170022 |
Te7 | 10 | 39 | 137 | 3294 | 13530 | 17010 |
Tr8 | 42 | 387 | 1515 | 35573 | 142500 | 180017 |
Te8 | 10 | 50 | 138 | 3552 | 14257 | 18007 |
Tr9 | 42 | 468 | 1624 | 37506 | 150390 | 190030 |
Te9 | 10 | 44 | 164 | 3605 | 15185 | 19008 |
入侵类型 | 项目 | 文献[ | 文献[ | 文献[ | 文献[ | 本文 方法/% |
---|---|---|---|---|---|---|
U2R | DR | 0.0 | 46.0 | 50.0 | 50.0 | 53.0 |
FAR | 0.0 | 0.000714 | 0.000714 | 0.000714 | 0.002381 | |
PR | 0.0 | 97.5 | 98.0 | 98.3333 | 95.0833 | |
R2L | DR | 40.5749 | 25.8345 | 88.4129 | 85.2031 | 87.6079 |
FAR | 0.0683 | 0.0546 | 0.0338 | 0.0417 | 0.0304 | |
PR | 54.1291 | 51.8648 | 86.0219 | 82.1050 | 87.3424 | |
Probe | DR | 94.2930 | 60.6635 | 98.3743 | 91.3207 | 98.0866 |
FAR | 0.0205 | 5.2973 | 0.0059 | 0.0210 | 0.0191 | |
PR | 97.3859 | 8.6734 | 99.2979 | 97.2964 | 97.7086 | |
Normal | DR | 99.7395 | 91.1490 | 99.8172 | 99.6618 | 99.7630 |
FAR | 0.8460 | 1.1389 | 0.0863 | 0.1722 | 0.1011 | |
PR | 96.6281 | 95.1134 | 99.6447 | 99.2928 | 99.5822 | |
DoS | DR | 99.3782 | 94.1923 | 99.9890 | 99.9729 | 99.9741 |
FAR | 0.0951 | 3.0902 | 0.0522 | 0.1365 | 0.0548 | |
PR | 99.9750 | 99.1521 | 99.9864 | 99.9643 | 99.9857 | |
ALL | DR | 99.1539 | 98.8610 | 99.9136 | 99.8277 | 99.8988 |
FAR | 0.2604 | 8.8509 | 0.18276 | 0.3381 | 0.2369 | |
PR | 99.9363 | 97.8693 | 99.9557 | 99.9176 | 99.9425 |
[1] | ALMSEIDIN M, ALZUBI M, KOVACS S, et al.Evaluation of Machine Learning Algorithms for Intrusion Detection System[C]//IEEE.15th IEEE International Symposium on Intelligent Systems and Informatics, September 14-16, 2017, Subotica, Serbia. New York: IEEE, 2017: 277-282. |
[2] | AMUDHA P, KARTHIK S, SIVAKUMARI S.Classification Techniques for Intrusion Detection-An Overview[J]. International Journal of Computer Applications, 2014, 76(16): 33-40. |
[3] | HINTON G E.Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair[C]//IMLS.27th International Conference on Machine Learning(ICML-10), June 21-24, 2010, Haifa, Israel.Madison:Omnipress, 2010:807-814. |
[4] | MUDA Z, YASSIN W, SULAIMAN M N, et al.Intrusion Detection Based on K-Means Clustering and Naïve Bayes Classification[C]// IEEE.17th International Conference on Information Technology in Asia, July 12-13, 2011, Kuching, Sarawak, Malaysia. New York:IEEE, 2011:192-197. |
[5] | KLINE D M, BERARDI V L.Revisiting Squared-error and Cross-entropy Functions for Training Neural Network Classifiers[J]. Neural Computing&Applications, 2005, 14(4): 310-318. |
[6] | MUKKAMALA S, JANOSKI G, SUNG A.Intrusion Detection Using Neural Networks and Support Vector Machines[C]// IEEE.International Joint Conference on Neural Networks, May 12-17, 2002, Honolulu, HI, USA. New York:IEEE, 2002:1702-1707. |
[7] | LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015, 521(7553):436-444. |
[8] | HOQUE M S, MUKIT M A, BIKAS M A N. An Implementation of Intrusion Detection System Using Genetic Algorithm[J]. International Journal of Network Security & Its Applications, 2012, 4(2):109-120. |
[9] | LAKHINA S, JOSEPH S, VERMA B.Feature Reduction using Principal Component Analysis for Effective Anomaly-Based Intrusion Detection on NSL-KDD[J]. International Journal of Engineering Science & Technology, 2010, 2(6):3175-3180. |
[10] | KDD.KDD Cup 1999 Data[EB/OL]. |
[11] | HYVARINENA. Fast and Robust Fixed-point Algorithms for Independent Component Analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3):626-634. |
[12] | KINGMA D P.Adam: A Method for Stochastic Optimization[J]. Computer Science, 2014, 1412(6980):1-15. |
[13] | MUKHERJEE S, SHARMA N.Intrusion Detection Using Naive Bayes Classifier with Feature Reduction[J]. Procedia Technology, 2012, 4(11):119-128. |
[14] | SUBBA B, BISWASS, KARMAKAR S.Intrusion Detection Systems Using Linear Discriminant Analysis and Logistic Regression[C]// IEEE.2015 Annual IEEE India Conference (INDICON), December 17-20, 2015, New Delhi, India. New York:IEEE, 2016:1-6. |
[15] | MOORE B.Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction[J]. IEEE Transactions on Automatic Control, 2003, 26(1):17-32. |
[16] | PHAM D T, GARAT P.Blind Separation of Mixture of Independent Sources Through a Quasi-maximum Likelihood Approach[J]. IEEE Transactions on Signal Processing, 1997, 45(7):1712-1725. |
[17] | MALOUCHE Z, MACCHI O.Adaptive Unsupervised Extraction of One Component of ALinear Mixture with A Single Neuron[J]. IEEE Transactions on Neural Networks, 1998, 9(1):123-138. |
[18] | RIO, RENNER R, et al.The Thermodynamic Meaning of Negative Entropy[J]. Nature, 2011, 474(7349):61-63. |
[19] | GLOROT X, BENGIO Y.Understanding the Difficulty of Training Deep Feedforward Neural Networks[J]. Journal of Machine Learning Research, 2010, 9(1):249-256. |
[20] | QI Mingyu, LIU Ming, FU Yanming.Research on Network Intrusion Detection Using Machines Based on Principal ComponentSupport Vector Analysis[J]. Netinfo Security, 2015, 15(2):15-18 |
戚名钰,刘铭,傅彦铭.基于PCA的SVM网络入侵检测研究[J].信息网络安全,2015,15(2):15-18. | |
[21] | GAO Ni, GAO Ling, HE Yiyue, et al.A Lightweight Intrusion Detection Model Based on Autoencoder Network with Feature REduction[J].Acta Electronica Sinica, 2017, 45(3):730-739. |
高妮,高岭,贺毅岳,等.基于自编码网络特征降维的轻量级入侵检测模型[J].电子学报,2017,45(3):730-739. | |
[22] | ZHANG Xuebo, LIU Jinghao, FU Xiaomei.Design and Implementation of Anti Web DDoS Attack Model Based on Improved Logistic Regression Algorithm[J]. Netinfo Security, 2017, 17(6):62-67 |
张雪博,刘敬浩,付晓梅.基于改进Logistic回归算法的抗WebDDoS攻击模型的设计与实现[J].信息网络安全,2017,17(6):62-67. | |
[23] | WANG Jianxiong, ZHANG Limin, ZHONG Zhaogen.Blind Source Separation Based on FastICA Algorithm[J]. Computer Technology and Development, 2011, 21(12):93-96. |
王建雄,张立民,钟兆根.基于FastICA算法的盲源分离[J].计算机技术与发展, 2011,21(12):93-96. | |
[24] | GUO Chonghui, JIA Hongfeng, ZHANG Na.Time Series Clustering Based on ICA for Stock Data Analysis[J]. Operations Researchand Management Science, 2008, 17(5):120-124. |
郭崇慧,贾宏峰,张娜.基于ICA的时间序列聚类方法及其在股票数据分析中的应用[J].运筹与管理,2008,17(5):120-124. | |
[25] | LAN Rongwei, SUN Huaijiang.Style Analysis and Human Locomotion Synthesis Based on Inverse Kinematics and Reconstructive ICA[J]. Acta Automatica Sinica, 2014, 40(6):1135-1147. |
蓝荣祎,孙怀江.基于逆运动学和重构式ICA的人体运动风格分析与合成[J].自动化学报,2014,40(6):1135-1147. | |
[26] | MA Chenxi.Chinese Event Detection Based on Recurrent Neural Network[J]. Netinfo Security,2018, 18(5):75-81. |
马晨曦. 基于递归神经网络的中文事件检测[J].信息网络安全,2018,18(5):75-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||