Netinfo Security ›› 2025, Vol. 25 ›› Issue (12): 1914-1926.doi: 10.3969/j.issn.1671-1122.2025.12.007
Previous Articles Next Articles
HAN Yiliang(
), PENG Yixuan, WU Xuguang, LI Yu
Received:2025-05-12
Online:2025-12-10
Published:2026-01-06
Contact:
HAN Yiliang
E-mail:hanyil@163.com
CLC Number:
HAN Yiliang, PENG Yixuan, WU Xuguang, LI Yu. Multimodal Feature Fusion Encrypted Traffic Classification Model Based on Graph Variational Auto-Encoder[J]. Netinfo Security, 2025, 25(12): 1914-1926.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.12.007
| 数据集 | vpn | nonvpn | tor | nontor | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 模型 | ACC | PR | RC | F1 | ACC | PR | RC | F1 | ACC | PR | RC | F1 | ACC | PR | RC | F1 |
| AppScanner[ | 0.8971 | 0.8761 | 0.8897 | 0.8804 | 0.7291 | 0.7309 | 0.718 | 0.7201 | 0.7403 | 0.6489 | 0.5902 | 0.6023 | 0.9333 | 0.8515 | 0.832 | 0.8453 |
| K-FP | 0.8848 | 0.8885 | 0.8883 | 0.8882 | 0.7530 | 0.7457 | 0.7333 | 0.7366 | 0.7874 | 0.7520 | 0.6312 | 0.6416 | 0.8722 | 0.8434 | 0.7773 | 0.8148 |
| FlowPrint | 0.8570 | 0.7483 | 0.7949 | 0.7598 | 0.6964 | 0.7093 | 0.7330 | 0.7151 | 0.2465 | 0.0365 | 0.1315 | 0.0549 | 0.5203 | 0.7550 | 0.6034 | 0.6113 |
| CUMUL | 0.7586 | 0.7456 | 0.7777 | 0.7569 | 0.6144 | 0.5898 | 0.5928 | 0.5854 | 0.6678 | 0.5341 | 0.4891 | 0.4989 | 0.8497 | 0.8035 | 0.7285 | 0.7519 |
| GRAIN[ | 0.7945 | 0.7893 | 0.7925 | 0.7843 | 0.6917 | 0.6782 | 0.6914 | 0.6817 | 0.6786 | 0.5125 | 0.5218 | 0.5106 | 0.7932 | 0.6751 | 0.6652 | 0.6650 |
| FAAR[ | 0.8286 | 0.8147 | 0.8327 | 0.8214 | 0.7384 | 0.7519 | 0.7131 | 0.7262 | 0.6950 | 0.5894 | 0.4855 | 0.4793 | 0.9034 | 0.8184 | 0.7686 | 0.7890 |
| ETC-PS[ | 0.8995 | 0.8909 | 0.9043 | 0.8957 | 0.7274 | 0.7415 | 0.7134 | 0.7209 | 0.7430 | 0.6755 | 0.5873 | 0.5977 | 0.9350 | 0.8580 | 0.8296 | 0.8471 |
| FS-Net[ | 0.9331 | 0.9296 | 0.9244 | 0.9267 | 0.7681 | 0.7740 | 0.7589 | 0.761 | 0.8337 | 0.7538 | 0.7248 | 0.7293 | 0.9426 | 0.8516 | 0.8402 | 0.8433 |
| DF[ | 0.7909 | 0.7696 | 0.8049 | 0.7818 | 0.6812 | 0.6927 | 0.6787 | 0.6771 | 0.6548 | 0.4837 | 0.4801 | 0.4753 | 0.8555 | 0.7990 | 0.7402 | 0.7577 |
| EDC[ | 0.7846 | 0.7757 | 0.8118 | 0.7898 | 0.6885 | 0.7068 | 0.6915 | 0.6893 | 0.6311 | 0.4891 | 0.4439 | 0.4415 | 0.8799 | 0.8101 | 0.7518 | 0.7558 |
| FFB[ | 0.8278 | 0.8688 | 0.8123 | 0.8309 | 0.7097 | 0.7351 | 0.7022 | 0.7127 | 0.6315 | 0.4842 | 0.5175 | 0.4924 | 0.8859 | 0.7450 | 0.7335 | 0.7335 |
| MVML[ | 0.6463 | 0.7203 | 0.6170 | 0.6123 | 0.5089 | 0.5714 | 0.4670 | 0.4769 | 0.6310 | 0.3881 | 0.4071 | 0.3719 | 0.7284 | 0.5537 | 0.5561 | 0.5506 |
| ET-BERT[ | 0.9411 | 0.9315 | 0.9386 | 0.9342 | 0.9091 | 0.9169 | 0.9153 | 0.9159 | 0.9547 | 0.9246 | 0.9610 | 0.9401 | 0.9040 | 0.8571 | 0.8228 | 0.8343 |
| GraphDApp[ | 0.6535 | 0.5712 | 0.6147 | 0.5784 | 0.4386 | 0.4121 | 0.3538 | 0.3505 | 0.4212 | 0.2483 | 0.2435 | 0.2207 | 0.699 | 0.5501 | 0.5452 | 0.5406 |
| ECD-GNN | 0.1178 | 0.0252 | 0.1734 | 0.040 | 0.0599 | 0.0094 | 0.1660 | 0.0183 | 0.062 | 0.012 | 0.1299 | 0.0184 | 0.9093 | 0.8030 | 0.8183 | 0.7992 |
| TFE-GNN[ | 0.9261 | 0.9229 | 0.8995 | 0.9059 | 0.8836 | 0.8939 | 0.8871 | 0.8869 | 0.9979 | 0.9980 | 0.9980 | 0.9980 | 0.9682 | 0.8544 | 0.8482 | 0.8307 |
| CLE-TFE | 0.9405 | 0.9604 | 0.9147 | 0.9326 | 0.8895 | 0.8978 | 0.8786 | 0.8862 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9737 | 0.8483 | 0.8116 | 0.8269 |
| MFF-VGAE | 0.9554 | 0.9713 | 0.9525 | 0.9589 | 0.9126 | 0.9205 | 0.9179 | 0.9182 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9702 | 0.8582 | 0.8504 | 0.8684 |
| Method | H | P | DUAL | JKN | CGFF | A&N | KL | ACC | PR | RC | F1 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| w/o P | √ | × | × | √ | × | √ | √ | 0.8095 | 0.7794 | 0.7758 | 0.7723 |
| w/o H | × | √ | × | √ | × | √ | √ | 0.6190 | 0.5983 | 0.5805 | 0.5625 |
| w/o DUAL | √ | √ | × | √ | √ | √ | √ | 0.9286 | 0.9468 | 0.9208 | 0.9318 |
| w/o JKN | √ | √ | √ | × | √ | √ | √ | 0.8750 | 0.8748 | 0.8908 | 0.8744 |
| w/o CGFF | √ | √ | √ | √ | × | √ | √ | 0.8274 | 0.8421 | 0.8079 | 0.8091 |
| w/o A&N | √ | √ | √ | √ | √ | × | √ | 0.4643 | 0.3129 | 0.3234 | 0.2868 |
| w/ SUM | √ | √ | √ | √ | √ | √ | √ | 0.9048 | 0.9048 | 0.8941 | 0.8980 |
| w/ MAX | √ | √ | √ | √ | √ | √ | √ | 0.8452 | 0.8455 | 0.8197 | 0.8208 |
| MFF-VGAE (default) | √ | √ | √ | √ | √ | √ | √ | 0.9554 | 0.9713 | 0.9525 | 0.9589 |
| [1] | SHARMA R, DANGI S, MISHRA P. A Comprehensive Review on Encryption Based Open Source Cyber Security Tools[C]// IEEE. The 6th International Conference on Signal Processing, Computing and Control (ISPCC). New York: IEEE, 2021: 614-619. |
| [2] | RAMADHANI E. Anonymity Communication VPN and Tor: A Comparative Study[J]. Journal of Physics: Conference Series, 2018, 983(1): 60-69. |
| [3] |
ZHANG Yifan, KANG Bingyi, HOOI B, et al. Deep Long-Tailed Learning: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10795-10816.
doi: 10.1109/TPAMI.2023.3268118 URL |
| [4] | HAYES J, DANEZIS G. K-Fingerprinting: A Robust Scalable Website Fingerprinting Technique[C]// USENIX. The 25th USENIX Conference on Security Symposium. Berkeley: USENIX, 2016: 1187-1203. |
| [5] | ZAKI F, AFIFI F, ABD R S, et al. GRAIN: Granular Multi-Label Encrypted Traffic Classification Using Classifier Chain[J]. Computer Networks, 2022, 84-93. |
| [6] | LIN Xinjie, XIONG Gang, GOU Gaopeng, et al. ET-BERT: A Contextualized Datagram Representation with Pre-Training Transformers for Encrypted Traffic Classification[C]// ACM. The Web Conference 2022. New York: ACM, 2022: 633-642. |
| [7] | CAI Wei, LI Zhen, FU Peipei, et al. METC-MVAE: Mobile Encrypted Traffic Classification with Masked Variational Autoencoders[C]// IEEE. 2022 IEEE 24th International Conference on High Performance Computing & Communications, New York: IEEE, 2022: 1422-1429. |
| [8] | ZHANG Haozhen, YU Le, XIAO Xi, et al. TFE-GNN: A Temporal Fusion Encoder Using Graph Neural Networks for Fine-Grained Encrypted Traffic Classification[C]// ACM.The ACM Web Conference 2023. New York: ACM, 2023: 2066-2075. |
| [9] | PAPADOGIANNAKI E, IOANNIDIS S. A Survey on Encrypted Network Traffic Analysis Applications, Techniques, and Countermeasures[J]. ACM Computer Survey, 2021, 54(6): 123-135. |
| [10] | XU Shijie, GENG Guanggang, JIN Xiaobo, et al. Seeing Traffic Paths: Encrypted Traffic Classification with Path Signature Features[J]. IEEE Transactions on Information Forensics and Security, 2022, 166-181. |
| [11] |
WU Hua, WU Qiuyan, CHENG Guang, et al. SFIM: Identify User Behavior Based on Stable Features[J]. Peer-to-Peer Networking and Applications, 2021, 14(6): 3674-3687.
doi: 10.1007/s12083-021-01214-2 |
| [12] | SIRINAM P, IMANI M, JUAREZ M, et al. Deep Fingerprinting: Undermining Website Fingerprinting Defenses with Deep Learning[C]// ACM. The 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 1928-1943. |
| [13] | LIU Chang, HE Longtao, XIONG Gang, et al. FS-Net: A Flow Sequence Network for Encrypted Traffic Classification[C]// IEEE. 2019 IEEE Conference on Computer Communications. New York: IEEE, 2019: 1171-1179. |
| [14] | ZHANG Haozhen, XIAO Xi, YU Le, et al. One Train for Two Tasks: An Encrypted Traffic Classification Framework Using Supervised Contrastive Learning[EB/OL]. (2024-02-12)[2025-01-10]. https://arxiv.org/abs/2402.07501. |
| [15] | CHANG Sa, FENG Yong. Multi-Modal Deep Learning Blockchain Smart Contract Vulnerability Detection Method[J]. Journal of Chinese Computer Systems, 2025, 46(4): 958-965. |
| 常萨, 冯勇. 多模态深度学习的区块链智能合约漏洞检测方法[J]. 小型微型计算机系统, 2025, 46(4): 958-965. | |
| [16] | LASHKARI A H, GIL G D, MAMUN M S I, et al. Characterization of Tor Traffic Using Time Based Features[C]// SciTePress. International Conference on Information Systems Security and Privacy. Lisbon: SciTePress, 2017: 253-262. |
| [17] |
SHAPIRA T, SHAVITT Y. FlowPic: A Generic Representation for Encrypted Traffic Classification and Applications Identification[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1218-1232.
doi: 10.1109/TNSM.2021.3071441 URL |
| [18] | TAYLOR V F, SPOLAOR R, CONTI M, et al. AppScanner: Automatic Fingerprinting of Smartphone Apps from Encrypted Network Traffic[C]// IEEE. Conference 2016 IEEE European Symposium on Security and Privacy (EuroS&P). New York: ACM, 2016: 439-454. |
| [19] | PANCHENKO A, LANZE F, PENNEKAMP J, et al. Website Fingerprinting at Internet Scale[C]// IEEE. Conference Network and Distributed System Security Symposium (NDSS). New York: IEEE, 2016: 23-47. |
| [20] | VAN EDE T, BORTOLAMEOTTI R, CONTINELLA A, et al. Flowprint: Semi-Supervised Mobile-App Fingerprinting on Encrypted Network Traffic[C]// IEEE. Conference Network and Distributed System Security Symposium (NDSS). New York: IEEE, 2020: 24-41. |
| [21] | LIU Xue, ZHANG Shigeng, LI Huihui, et al. Fast Application Activity Recognition with Encrypted Traffic[C]// IEEE. Wireless Algorithms, Systems and Applications Conference. New York: IEEE, 2021: 314-325. |
| [22] | LI Wenbin, QUENARD G. Towards a Multi-Label Dataset of Internet Traffic for Digital Behavior Classification[C]// IEEE. Conference 2021 3rd International Conference on Computer Communication and the Internet (ICCCI). New York: IEEE, 2021: 38-46. |
| [23] | ZHANG Hui, GOU Gaopeng, XIONG Gang, et al. Multi-Granularity Mobile Encrypted Traffic Classification Based on Fusion Features[EB/OL]. (2021-10-10)[2025-01- 10]. https://link.springer.com/chapter/10.1007/978-3-030-89137-4_11. |
| [24] | FU Yanjie, LIU Junming, LI Xiaolin, et al. A Multi-Label Multi-View Learning Framework for In-App Service Usage Analysis[J]. ACM Trans Intell Syst Technol, 2018, 9(4): 40-49. |
| [25] | SHEN Meng, ZHANG Jinpeng, ZHU Liehuang, et al. Accurate Decentralized Application Identification via Encrypted Traffic Analysis Using Graph Neural Networks[EB/OL]. (2021-01-11)[2025-01-10]. https://ieeexplore.ieee.org/document/9319399. |
| [26] | HUOH T L, LUO Yan, ZHANG Tong. Encrypted Network Traffic Classification Using a Geometric Learning Model[C]// IEEE. Conference 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). New York: IEEE, 2021: 376-383. |
| [1] | LI Xiao, SONG Xiao, LI Yong. Research on Differential Privacy Methods for Medical Diagnosis Based on Knowledge Distillation [J]. Netinfo Security, 2025, 25(4): 524-535. |
| [2] | ZHANG Lu, JIA Peng, LIU Jiayong. Binary Code Similarity Detection Method Based on Multivariate Semantic Graph [J]. Netinfo Security, 2025, 25(10): 1589-1603. |
| [3] | TAI Yingying, WEI Yuanyuan, ZHOU Hanxun, WANG Yan. Encrypted Traffic Classification Method Based on Optimal Transport and I-ELM [J]. Netinfo Security, 2025, 25(1): 148-158. |
| [4] | ZHANG Xuan, WAN Liang, LUO Heng, YANG Yang. Automated Botnet Detection Method Based on Two-Stage Graph Learning [J]. Netinfo Security, 2024, 24(12): 1933-1947. |
| [5] | WEI Jinxia, HUANG Xizhang, FU Yuhao, LI Jing, LONG Chun. Mining Traffic Detection Method Based on Global Feature Learning [J]. Netinfo Security, 2024, 24(10): 1506-1514. |
| [6] | ZHANG Yuchen, ZHANG Yawen, WU Yue, LI Cheng. A Method of Feature Extraction for Network Traffic Based on Time-Frequency Diagrams and Improved E-GraphSAGE [J]. Netinfo Security, 2023, 23(9): 12-24. |
| [7] | WEI Songjie, LI Chenghao, SHEN Haotong, ZHANG Wenzhe. Research and Application of Network Anonymous Traffic Detection Method Based on Deep Forest [J]. Netinfo Security, 2022, 22(8): 64-71. |
| [8] | GU Zhaojun, HAO Jintao, ZHOU Jingxian. Classification of Malicious Network Traffic Based on Improved Bilinear Convolutional Neural Network [J]. Netinfo Security, 2020, 20(10): 67-74. |
| [9] | Shuning WEI, Xingru CHEN, Yong TANG, Hui LIU. Research on the Application of AR-HELM Algorithm in Network Traffic Classifi cation [J]. Netinfo Security, 2018, 18(1): 9-14. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||