近年来,无论是钓鱼攻击的数量还是其造成的损失都在不断增加,网络钓鱼攻击成为人们面临的主要网络安全威胁之一。当前,已有许多网络钓鱼检测方法被相继提出以抵御网络钓鱼攻击,但现有钓鱼检测方法多为被动检测,且容易引起大量误报。针对上述问题,文章提出一种钓鱼扩线方法。首先,根据钓鱼网站的信息从多维度进行分析,得到与之相关的其他网站,以找到更多还未被发现的钓鱼网站;然后,针对钓鱼网站的视觉仿冒特性,提出一种基于深度学习的网络钓鱼检测方法,将截图进行切割,得到判定为logo的区域,再使用EfficientNetV2挖掘视觉仿冒特性;最后,对疑似钓鱼网站进行综合评价,以降低误报率。通过对现有钓鱼网站进行实验验证,证明了文章所提方法的有效性。