信息网络安全 ›› 2024, Vol. 24 ›› Issue (4): 602-613.doi: 10.3969/j.issn.1671-1122.2024.04.010

• 技术研究 • 上一篇    下一篇

基于策略图的三维位置隐私发布算法研究

尹春勇(), 贾续康   

  1. 南京信息工程大学计算机学院,南京 210044
  • 收稿日期:2023-09-21 出版日期:2024-04-10 发布日期:2024-05-16
  • 通讯作者: 尹春勇 ycy@nuist.edu.cn
  • 作者简介:尹春勇(1977—),男,山东,教授,博士,CCF会员,主要研究方向为隐私保护、机器学习、网络安全|贾续康(1999—),男,河南,硕士研究生,主要研究方向为隐私保护、位置隐私
  • 基金资助:
    国家自然科学基金(61772282)

Research on 3D-Location Privacy Publishing Algorithm Based on Policy Graph

YIN Chunyong(), JIA Xukang   

  1. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2023-09-21 Online:2024-04-10 Published:2024-05-16

摘要:

随着移动智能终端的普及,基于位置服务(Location-Based Services,LBS)的应用迎来了爆发式增长,高层室内建筑是位置服务的重要应用场景之一。然而现有的位置隐私保护算法大多适用于二维位置数据,面向大型室内三维场景的位置隐私保护研究尚且不足,并且缺乏可个性化定制的三维隐私策略。针对该问题,文章提出了一种基于策略图的三维位置隐私发布算法。首先,设计一种基于可定制策略图的位置隐私保护框架,可根据具体场景需求动态定制适合的隐私策略;其次,设计两种面向三维的差分隐私变体机制,结合定制策略图,实现三维场景下的位置隐私保护;最后,在三维数据集上进行仿真实验,实验结果表明,与其他三维位置隐私保护算法相比,文章所提算法具有更好的稳定性和效用性。

关键词: 高层室内场景, 三维位置隐私, 策略图, 差分隐私, 基于位置服务

Abstract:

With the popularization of mobile smart terminals, the application of location-based services has seen explosive growth, and high-rise indoor buildings are one of the important application scenarios of LBS. However, most of the existing location privacy protection algorithms are applicable to 2D location data. The research on location privacy protection for large indoor 3D scenes is still insufficient and lacks personalizable 3D privacy policies. To address this problem, this paper proposed a 3D-location privacy publishing algorithm based on policy graph. Firstly, a customizable policy graph-based location privacy protection framework was designed, which could dynamically customize suitable privacy policies according to specific scene requirements. Secondly, two 3D-oriented differential privacy variant mechanisms were designed in combination with customized policy graph to realize location privacy protection in 3D scenes. Finally, simulation experiments were conducted on 3D datasets. The results demonstrate that, compared to other 3D location privacy preserving algorithms, the proposed algorithm has better stability and utility.

Key words: high-rise indoor scenes, 3D-location privacy, policy graph, differential privacy, location-based services

中图分类号: