信息网络安全 ›› 2023, Vol. 23 ›› Issue (12): 10-20.doi: 10.3969/j.issn.1671-1122.2023.12.002
收稿日期:
2023-10-07
出版日期:
2023-12-10
发布日期:
2023-12-13
通讯作者:
王健
E-mail:wangjian@bjtu.edu.cn
作者简介:
刘吉强(1973—),男,山东,教授,博士,CCF会员,主要研究方向为可信计算、隐私保护、云计算|王雪微(1999—),女,黑龙江,硕士研究生,主要研究方向为联邦学习|梁梦晴(2000—),女,陕西,硕士研究生,主要研究方向为联邦学习、隐私计算|王健(1975—),男,山东,副教授,博士,主要研究方向为密码应用、区块链、网络安全
基金资助:
LIU Jiqiang, WANG Xuewei, LIANG Mengqing, WANG Jian()
Received:
2023-10-07
Online:
2023-12-10
Published:
2023-12-13
摘要:
联邦学习允许车辆在本地保留数据并进行模型训练,从而更好地保护用户隐私,但车载传感器和行驶路线等条件不同,参与联邦学习的车辆可能具有不同数据分布,从而降低模型泛化能力,增大收敛难度。为了确保实时性,车联网中广泛应用了异步随机梯度下降技术,但梯度延迟问题会导致模型训练不准确。为了解决上述问题,文章提出一种基于共享数据集和梯度补偿的分层联邦学习框架。该框架使用共享数据集和基于ReLU值加权的聚合方法减少模型偏差,并利用梯度函数的泰勒展开近似原始损失函数,对异步随机梯度下降进行梯度补偿。在MNIST和CIFAR-10数据集上的实验结果表明,与FedAVG、MOON和HierFAVG算法相比,该方法平均准确率分别提高了13.8%、2.2%和3.5%,时间开销仅为同步随机梯度下降和异步随机梯度下降的1/2。
中图分类号:
刘吉强, 王雪微, 梁梦晴, 王健. 基于共享数据集和梯度补偿的分层联邦学习框架[J]. 信息网络安全, 2023, 23(12): 10-20.
LIU Jiqiang, WANG Xuewei, LIANG Mengqing, WANG Jian. A Hierarchical Federated Learning Framework Based on Shared Dataset and Gradient Compensation[J]. Netinfo Security, 2023, 23(12): 10-20.
表4
不同场景下平均测试准确率和损失
场景一 | ||||
---|---|---|---|---|
MNIST(CNN模型) | CIFAR-10(CNN模型) | |||
准确率 | 损失 | 准确率 | 损失 | |
本文算法 | 92.22% | 0.2757 | 63.02% | 0.2800 |
HierFAVG | 89.73% | 0.2976 | 60.19% | 0.2876 |
MOON | 90.03% | 0.2991 | 59.45% | 0.2911 |
FedAvg | 78.41% | 0.3166 | 55.43% | 0.3601 |
场景二 | ||||
MNIST(CNN模型) | CIFAR-10(CNN模型) | |||
准确率 | 损失 | 准确率 | 损失 | |
本文算法 | 91.99% | 0.2762 | 58.21% | 0.3301 |
HierFAVG | 88.49% | 0.3253 | 52.11% | 0.2991 |
MOON | 88.01% | 0.3213 | 52.66% | 0.2989 |
FedAvg | 81.44% | 0.3701 | 43.02% | 0.3729 |
[1] |
YANG Helin, LAM K Y, XIAO Liang, et al. Lead Federated Neuromorphic Learning for Wireless Edge Artificial Intelligence[J]. Nature Communications, 2022, 13(1): 4269-4280.
doi: 10.1038/s41467-022-32020-w pmid: 35879326 |
[2] | YANG Fangchun, WANG Shangguang, LI Jinglin, et al. An Overview of Internet of Vehicles[J]. China Communications, 2014, 11(10): 1-15. |
[3] |
KAIWARTYA O, ABDULLAH A H, CAO Yue, et al. Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects[J]. IEEE Access, 2016, 4: 5356-5373.
doi: 10.1109/ACCESS.2016.2603219 URL |
[4] |
CHEN Chen, ZENG Yini, LI Huan, et al. A Multihop Task Offloading Decision Model in Mec-Enabled Internet of Vehicles[J]. IEEE Internet of Things Journal, 2022, 10(4): 3215-3230.
doi: 10.1109/JIOT.2022.3143529 URL |
[5] | CHEN Chen, LIU Lei, WAN Shaohua, et al. Data Dissemination for Industry 4.0 Applications in Internet of Vehicles Based on Short-Term Traffic Prediction[J]. ACM Transactions on Internet Technology(TOIT), 2021, 22(1): 1-18. |
[6] |
WANG Teng, HUO Zheng, HUANG Yaxin, et al. A Review of Research on Privacy Protection Technologies in Federated Learning[J]. Journal of Computer Applications, 2023, 43(2): 437-449.
doi: 10.11772/j.issn.1001-9081.2021122072 |
王腾, 霍峥, 黄亚鑫, 等. 联邦学习中的隐私保护技术研究综述[J]. 计算机应用, 2023, 43(2):437-449.
doi: 10.11772/j.issn.1001-9081.2021122072 |
|
[7] | PANDYA S. Federated Learning for Smart Cities: A Comprehensive Survey[EB/OL]. (2022-12-31)[2023-09-27]. https://doi.org/10.1016/j.seta.2022.102987. |
[8] | BELTRÁN E T M, PÉREZ M Q, SÁNCHEZ P M S, et al. Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(4): 2983-3013. |
[9] | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// JMLR. 20th International Conference on Artificial Intelligence and Statistics(AISTATS). Florida: JMLR, 2017: 1273-1282. |
[10] |
MA Xiaodong, ZHU Jia, LIN Zhihao, et al. A State-of-the-Art Survey on Solving Non-IID Data in Federated Learning[J]. Future Generation Computer Systems, 2022, 135: 244-258.
doi: 10.1016/j.future.2022.05.003 URL |
[11] | COLLINS L. Exploiting Shared Repre-Sentations for Personalized Federated Learning[EB/OL]. (2021-07-24)[2023-09-27]. https://proceedings.mlr.press/v139/collins21a.html. |
[12] | KWATRA S, TORRA V. A k-Anonymised Federated Learning Framework with Decision Trees[C]// Springer. International Workshop on Data Privacy Management. Heidelberg: Springer, 2021: 106-120. |
[13] | LI Qinbin, HE Bingsheng, SONG D. Model-Contrastive Federated Learning[C]// IEEE. The IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 10713-10722. |
[14] | JIANG Yihan, KONEČNÝ J, RUSH K, et al. Improving Federated Learning Personalization via Model Agnostic Meta Learning[EB/OL]. (2019-09-27)[2023-09-27]. https://doi.org/10.48550/arXiv.1909.12488. |
[15] | DENNIS D K. Heterogeneity for the Win: One-Shot Federated Clustering[C]// ICML. The 38th International Conference on Machine Learning. New York: ICML, 2021: 2611-2620. |
[16] | SRA S. Adadelay: Delay Adaptive Distributed Stochastic Convex Optimization[EB/OL]. (2015-08-20)[2023-09-27]. https://doi.org/10.48550/arXiv.1508.05003. |
[17] | ODENA A. Faster Asynchronous Sgd[EB/OL]. (2016-01-15)[2023-09-27]. https://doi.org/10.48550/arXiv.1601.04033. |
[18] | REDDY R V K, RAO B S, RAJU K P. Handwritten Hindi Digits Recognition Using Convolutional Neural Network with RMSprop Optimization[C]// IEEE. 2018 2nd International Conference on Intel-Ligent Computing and Control Systems(ICICCS). New York: IEEE, 2018: 45-51. |
[19] | MITLIAGKAS I, ZHANG Ce, HADJIS S, et al. Asynchrony Begets Mo-Mentum, with an Application to Deep Learning[C]// IEEE. 2016 54th Annual Allerton Conference on Communication, Control, and Computing(Allerton). New York: IEEE, 2016: 997-1004. |
[20] |
QIAN Ning. On the Momentum Term in Gradient Descent Learning Algorithms[J]. Neural Networks, 1999, 12(1): 145-151.
pmid: 12662723 |
[21] | TAN Tao, XIE Hong. Asynchronous SGD with Stale Gradient Dynamic Adjustment for Deep Learning Training[J]. Social Acience Research Network, 2023, 112: 88-103. |
[22] |
MU Xutong, SHEN Yulong, CHENG Ke, et al. Fedproc: Prototypical Contrastive Federated Learning on Non-IID Data[J]. Future Generation Computer Systems, 2023, 143: 93-104.
doi: 10.1016/j.future.2023.01.019 URL |
[23] | LIU Lumin, ZHANG Jun, SONG S H, et al. Client-Edge-Cloud Hierarchical Federated Learning[C]// IEEE. ICC 2020 IEEE International Conference on Communications(ICC). New York: IEEE, 2020: 1-6. |
[24] | ZHANG Yuxuan, XU Chao, YANG H H, et al. DPP-Based Client Selection for Federated Learning with NON-IID Data[C]// IEEE. ICASSP 2023 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). New York: IEEE, 2023: 1-5. |
[25] | GUO Junqi, XIONG Qingyun, YANG Minghui, et al. A Double-Compensation-Based Federated Learning Scheme for Data Privacy Protection in a Social IoT Scenario[J]. Computers, Materials & Continua, 2023, 76(1): 827-848. |
[26] | ZHENG Shuxin, MENG Qi, WANG Taifeng, et al. Asynchronous Stochastic Gradient Descent with Delay Compensation[C]// ICML. 34th International Conference on Machine Learning. New York: ICML, 2017: 4120-4129. |
[27] | LIU Jing, YUAN Haidong, LU Xiaoming, et al. Quantum Fisher Information Matrix and Multiparameter Estimation[EB/OL]. (2019-12-10)[2023-09-27]. https://doi.org/10.1088/1751-8121/ab5d4d. |
[28] | LIAN Xiangru, HUANG Yijun, LI Yuncheng, et al. Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization[C]// NIPS. The 28th International Conference on Neural Information Processing Systems-Volume 2. San Diego:NIPS, 2015: 2737-2745. |
[29] | XIE Cong, KOYEJO S, GUPTA I. Asynchronous Federated Optimization[EB/OL]. (2020-12-05)[2023-09-27]. https://doi.org/10.48550/arXiv.1903.03934. |
[1] | 戴玉, 周非, 薛丹. 基于中国剩余定理秘密共享的切换认证协议[J]. 信息网络安全, 2023, 23(9): 118-128. |
[2] | 彭翰中, 张珠君, 闫理跃, 胡成林. 联盟链下基于联邦学习聚合算法的入侵检测机制优化研究[J]. 信息网络安全, 2023, 23(8): 76-85. |
[3] | 陈晶, 彭长根, 谭伟杰, 许德权. 基于差分隐私和秘密共享的多服务器联邦学习方案[J]. 信息网络安全, 2023, 23(7): 98-110. |
[4] | 曹越, 吕臣臣, 孙娅苹, 张宇昂. 面向车联网环境的异常行为检测机制研究综述[J]. 信息网络安全, 2023, 23(4): 10-19. |
[5] | 刘长杰, 石润华. 基于安全高效联邦学习的智能电网入侵检测模型[J]. 信息网络安全, 2023, 23(4): 90-101. |
[6] | 谭伟杰, 杨雨婷, 牛坤, 彭长根. 基于MI-PUF的V2X车联网通信安全认证协议[J]. 信息网络安全, 2023, 23(12): 38-48. |
[7] | 杨丽, 朱凌波, 于越明, 苗银宾. 联邦学习与攻防对抗综述[J]. 信息网络安全, 2023, 23(12): 69-90. |
[8] | 胡艺, 佘堃. 基于区块链和智能合约的双链车联网系统[J]. 信息网络安全, 2022, 22(8): 26-35. |
[9] | 刘忻, 李韵宜, 王淼. 一种基于机密计算的联邦学习节点轻量级身份认证协议[J]. 信息网络安全, 2022, 22(7): 37-45. |
[10] | 吕国华, 胡学先, 杨明, 徐敏. 基于联邦随机森林的船舶AIS轨迹分类算法[J]. 信息网络安全, 2022, 22(4): 67-76. |
[11] | 刘忻, 王家寅, 杨浩睿, 张瑞生. 一种基于区块链和secGear框架的车联网认证协议[J]. 信息网络安全, 2022, 22(1): 27-36. |
[12] | 白宏鹏, 邓东旭, 许光全, 周德祥. 基于联邦学习的入侵检测机制研究[J]. 信息网络安全, 2022, 22(1): 46-54. |
[13] | 徐硕, 张睿, 夏辉. 基于数据属性修改的联邦学习隐私保护策略[J]. 信息网络安全, 2022, 22(1): 55-63. |
[14] | 路宏琳, 王利明, 杨婧. 一种新的参数掩盖联邦学习隐私保护方案[J]. 信息网络安全, 2021, 21(8): 26-34. |
[15] | 任涛, 金若辰, 罗咏梅. 融合区块链与联邦学习的网络入侵检测算法[J]. 信息网络安全, 2021, 21(7): 27-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||