信息网络安全 ›› 2023, Vol. 23 ›› Issue (12): 1-9.doi: 10.3969/j.issn.1671-1122.2023.12.001

• 等级保护 • 上一篇    下一篇

针对品牌的网络钓鱼扩线与检测方案

文伟平(), 朱一帆, 吕子晗, 刘成杰   

  1. 北京大学软件与微电子学院,北京 100080
  • 收稿日期:2023-08-15 出版日期:2023-12-10 发布日期:2023-12-13
  • 通讯作者: 文伟平 E-mail:weipingwen@pku.edu.cn
  • 作者简介:文伟平(1976—),男,湖南,教授,博士,主要研究方向为系统与网络安全、大数据与云安全、智能计算安全|朱一帆(1997—),男,湖北,硕士研究生,主要研究方向为网络与系统安全|吕子晗(1996—),男,河北,硕士研究生,主要研究方向为网络流量分析和恶意行为识别|刘成杰(1998—),男,湖南,博士研究生,主要研究方向为软件安全、漏洞挖掘和入侵检测
  • 基金资助:
    国家自然科学基金(61872011)

Brand-Specific Phishing Expansion and Detection Solutions

WEN Weiping(), ZHU Yifan, LYU Zihan, LIU Chengjie   

  1. School of Software and Microelectronics, Peking University, Beijing 100080, China
  • Received:2023-08-15 Online:2023-12-10 Published:2023-12-13

摘要:

近年来,无论是钓鱼攻击的数量还是其造成的损失都在不断增加,网络钓鱼攻击成为人们面临的主要网络安全威胁之一。当前,已有许多网络钓鱼检测方法被相继提出以抵御网络钓鱼攻击,但现有钓鱼检测方法多为被动检测,且容易引起大量误报。针对上述问题,文章提出一种钓鱼扩线方法。首先,根据钓鱼网站的信息从多维度进行分析,得到与之相关的其他网站,以找到更多还未被发现的钓鱼网站;然后,针对钓鱼网站的视觉仿冒特性,提出一种基于深度学习的网络钓鱼检测方法,将截图进行切割,得到判定为logo的区域,再使用EfficientNetV2挖掘视觉仿冒特性;最后,对疑似钓鱼网站进行综合评价,以降低误报率。通过对现有钓鱼网站进行实验验证,证明了文章所提方法的有效性。

关键词: 网络钓鱼检测, 深度学习, 图片切割, 主动扩线

Abstract:

In recent years, both the number of phishing attacks and the losses caused by them have been increasing, and phishing attacks have become one of the main network security threats that people face. Currently, many phishing detection methods have been proposed to defend against phishing attacks, but most of the known phishing detection methods are passive detection and are prone to cause a large number of false positives. In response to the above issues, this paper proposed a phishing expansion method. Firstly, according to the phishing website information, it was analyzed in a multi-dimensional manner, and other related websites were obtained, so as to find more phishing websites that have not been discovered yet. Then, aiming at the visual counterfeiting characteristics of phishing websites, this paper proposed a phishing detection method based on deep learning, cutting the screenshots to obtain the area judged as a logo, and using EfficientNetV2 to mine visual counterfeiting characteristic. Finally, conducted a comprehensive evaluation of suspected phishing websites to reduce the false positive rate. The effectiveness of the method proposed in this paper was proved by the experimental verification of the existing phishing websites.

Key words: phishing detection, deep learning, picture cutting, expansion of phishing sites

中图分类号: