信息网络安全 ›› 2022, Vol. 22 ›› Issue (6): 44-52.doi: 10.3969/j.issn.1671-1122.2022.06.005
收稿日期:
2022-02-21
出版日期:
2022-06-10
发布日期:
2022-06-30
通讯作者:
左珮良
E-mail:zplzpl88@bupt.cn
作者简介:
赵洪(1978—),男,四川,博士研究生,主要研究方向为密码协议设计与分析、网络信息安全|李姗(1996—),女,河北,硕士研究生,主要研究方向为物联网、网络信息安全|左珮良(1991—),男,山东,讲师,博士,主要研究方向为物联网、软件定义网络、网络信息安全|魏占祯(1971—),男,青海,正高级工程师,硕士,主要研究方向为网络信息安全
基金资助:
ZHAO Hong1,2, LI Shan2, ZUO Peiliang2(), WEI Zhanzhen2
Received:
2022-02-21
Online:
2022-06-10
Published:
2022-06-30
Contact:
ZUO Peiliang
E-mail:zplzpl88@bupt.cn
摘要:
雾计算作为一种分散式计算结构应用于物联网中,其固有的广播特性导致网络通信系统面临严重的安全威胁。同时,在动态变化的物联网环境中,无线资源的合理分配对减少通信服务时延至关重要。文章在存在不可信节点的前提下,对物联网安全资源分配问题进行研究,基于雾节点接收机具备同时同频全双工自干扰消除技术的假定,提出一种具有物理层安全特性的针对雾层无线资源的智能分配方法。该方法通过构建深度强化学习神经网络,设计合理的状态、动作和奖励等参数,实现物联网感知数据在安全保密防护条件下的快速上传。实验结果表明,该方法收敛速度较快,且在性能上明显优于对比方法。
中图分类号:
赵洪, 李姗, 左珮良, 魏占祯. 基于强化学习的物联网安全资源分配方法[J]. 信息网络安全, 2022, 22(6): 44-52.
ZHAO Hong, LI Shan, ZUO Peiliang, WEI Zhanzhen. Security Resource Allocation Method for Internet of Things Based on Reinforcement Learning[J]. Netinfo Security, 2022, 22(6): 44-52.
[1] |
OMONI B, HUSSAIN R, JAVED M A, et al. Fog/Edge Computing-Based IoT(FECIoT): Architecture, Applications, and Research Issues[J]. IEEE Internet of Things Journal, 2019, 6(3): 4118-4149.
doi: 10.1109/JIOT.2018.2875544 URL |
[2] | GUPTA S, GARG R, GUPTA N, et al. Energy-Effcient Dynamic Homomorphic Security Scheme for Fog Computing in IoT Networks[J]. Journal of Information Security and Applications, 2021, 58: 1-8. |
[3] |
TARIQ N, ASIM M, AL-OBEIDAT F, et al. The Security of Big Data in Fog-Enabled IoT Applications Including Blockchain: A Survey[J]. Sensors, 2019, 19(8): 1788-1821.
doi: 10.3390/s19081788 URL |
[4] | SADIQUE K M, RAHMANI R, JOHANNESSON P. Fog Computing for Trust in the Internet of Things(IoT): A Systematic Literature Review[C]// IEEE. 2020 International Conference on Computer Science, Engineering and Applications(ICCSEA). New York:IEEE, 2020: 1-6. |
[5] | FERRETTI L, MARCHETTI M, COLAJANNI M. Fog-Based Secure Communications for Low-Power IoT Devices[J]. ACM Transactions on Internet Technology, 2019, 19(2): 1-21. |
[6] | AMOR A B, ABID M, MEDDEB A. A Secure Fog-Based Communication Scheme[C]// IEEE. 2017 International Conference on Internet of Things, Embedded Systems and Communications(IINTEC). New York:IEEE, 2017: 146-151. |
[7] |
WU Yongpeng, KHISTI A, XIAO Chengshan, et al. A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(4): 679-695.
doi: 10.1109/JSAC.2018.2825560 URL |
[8] |
ZOU Yulong, ZHU Jia, WANG Xianbin, et al. A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends[J]. Proceedings of the IEEE, 2016, 104(9): 1727-1765.
doi: 10.1109/JPROC.2016.2558521 URL |
[9] | HADDAD S, OZGUR A, TELATAR E. Can Full-Duplex More Than Double the Capacity of Wireless Networks[C]// IEEE. 2017 IEEE International Symposium on Information Theory(ISIT). New York:IEEE, 2017: 963-967. |
[10] |
LEI Hongjiang, YANG Zixuan, PARK K H, et al. Secrecy Outage Analysis for Cooperative NOMA Systems with Relay Selection Schemes[J]. IEEE Transactions on Communications, 2019, 67(9): 6282-6298.
doi: 10.1109/TCOMM.2019.2916070 URL |
[11] |
WANG Zhenling, PENG Zhangyou. Secrecy Performance Analysis of Relay Selection in Cooperative NOMA Systems[J]. IEEE Access, 2019, 7: 86274-86287.
doi: 10.1109/ACCESS.2019.2925380 |
[12] | GOMEZ G, MARTIN-VEGA F J, LOPEZ-MARTINEZ F J, et al. Physical Layer Security in Uplink NOMA Multi-Antenna Systems with Randomly Distributed Eavesdroppers[EB/OL]. (2017-09-14) [2022-01-13]. https://arxiv.org/abs/1709.04693. |
[13] | FENG Youhong, YAN Shihao, YANG Zhen, et al. User and Relay Selection with Artificial Noise to Enhance Physical Layer Security[EB/OL]. (2017-12-06) [2021-01-25]. https://arxiv.org/abs/1712.02104v2. |
[14] |
LV Lu, DING Zhiguo, NI Qiang, et al. Secure MISO-NOMA Transmission with Artificial Noise[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6700-6705.
doi: 10.1109/TVT.2018.2811733 URL |
[15] |
YAN Shihao, ZHOU Xiangyun, YANG Nan, et al. Secret Channel Training to Enhance Physical Layer Security with a Full-Duplex Receiver[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11): 2788-2800.
doi: 10.1109/TIFS.2018.2834301 URL |
[16] |
SOHRABI R, ZHU Qiping, HUA Yingbo. Secrecy Analyses of a Full-Duplex MIMOME Network[J]. IEEE Transactions on Signal Processing, 2019, 67(23): 5968-5982.
doi: 10.1109/TSP.2019.2949501 URL |
[17] | MOBASHERI M, KIM Y, KIM W. Toward Developing Fog Decision Making on the Transmission Rate of Various IoT Devices Based on Reinforcement Learning[J]. IEEE Internet of Things Magazine, 2020, 3: 38-42. |
[18] | FAN Qiang, ANSARI N. Towards Workload Balancing in Fog Computing Empowered IoT[J]. IEEE Transactions on Network Science& Engineering, 2020, 7: 253-262. |
[19] |
LIU Mengyu, LIU Yuan. Price-Based Distributed Offloading for Mobile-Edge Computing with Computation Capacity Constraints[J]. IEEE Wireless Communications Letters, 2018, 7(3): 420-423.
doi: 10.1109/LWC.2017.2780128 URL |
[20] |
XI Linhan, WANG Ying, WANG Yang, et al. Deep Reinforcement Learning-Based Service-Oriented Resource Allocation in Smart Grids[J]. IEEE Access, 2021, 9: 77637-77648.
doi: 10.1109/ACCESS.2021.3082259 URL |
[21] |
WEI Yifei, YU F R, SONG Mei, et al. Joint Optimization of Caching, Computing, and Radio Resources for Fog-Enabled IoT Using Natural Actor-Critic Deep Reinforcement Learning[J]. IEEE Internet of Things Journal, 2019, 6(2): 2061-2073.
doi: 10.1109/JIOT.2018.2878435 |
[22] |
WYNER A D. The Wire-Tap Channel[J]. Bell System Technical Journal, 1975, 54: 1355-1387.
doi: 10.1002/j.1538-7305.1975.tb02040.x URL |
[23] |
LI Wei, GHOGHO M, CHEN Bin, et al. Secure Communication via Sending Artificial Noise by the Receiver: Outage Secrecy Capacity/Region Analysis[J]. IEEE Communications Letters, 2012, 16(10): 1628-1631.
doi: 10.1109/LCOMM.2012.081612.121344 URL |
[24] |
CHEN Xing, LIU Guizhong. Energy-Efficient Task Offloading and Resource Allocation via Deep Reinforcement Learning for Augmented Reality in Mobile Edge Networks[J]. IEEE Internet of Things Journal, 2021, 8(13): 10843-10856.
doi: 10.1109/JIOT.2021.3050804 URL |
[25] |
GOUDARZI M, WU Hanming, PALANISWAMI M S, et al. An Application Placement Technique for Concurrent IoT Applications in Edge and Fog Computing Environments[J]. IEEE Transactions on Mobile Computing, 2021, 20(4): 1298-1311.
doi: 10.1109/TMC.2020.2967041 URL |
[26] | ZUO Peiliang, WANG Chen, YAO Ze, et al. An Intelligent Routing Algorithm for LEO Satellites Based on Deep Reinforcement Learning[C]// IEEE. IEEE 94nd Vehicular Technology Conference(VTC2021-Fall). New York:IEEE, 2021: 1-5. |
[27] |
YU Yiding, WANG Taotao, LIEW S C. Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37: 1277-1290.
doi: 10.1109/JSAC.2019.2904329 |
[28] |
GU Bo, ZHANG Xu, LIN Ziqi, et al. Deep Multi-Agent Reinforcement Learning-Based Resource Allocation for Internet of Controllable Things[J]. IEEE Internet of Things Journal, 2021, 8: 3066-3074.
doi: 10.1109/JIOT.2020.3023111 URL |
[29] | LANGE S, RIEDMILLER M. Deep Auto-Encoder Neural Networks in Reinforcement Learning[C]// IEEE. International Joint Conference on Neural Networks(IJCNN). New York:IEEE, 2010: 1-8. |
[1] | 吴克河, 程瑞, 姜啸晨, 张继宇. 基于SDP的电力物联网安全防护方案[J]. 信息网络安全, 2022, 22(2): 32-38. |
[2] | 李桐, 任帅, 王刚, 孟庆宇. 基于变色龙认证树的云边端协同流式数据完整性验证模型[J]. 信息网络安全, 2022, 22(1): 37-45. |
[3] | 陈庆港, 杜彦辉, 韩奕, 刘翔宇. 基于深度可分离卷积的物联网设备识别模型[J]. 信息网络安全, 2021, 21(9): 67-73. |
[4] | 吴克河, 程瑞, 郑碧煌, 崔文超. 电力物联网安全通信协议研究[J]. 信息网络安全, 2021, 21(9): 8-15. |
[5] | 李群, 董佳涵, 关志涛, 王超. 一种基于聚类分类的物联网恶意攻击检测方法[J]. 信息网络安全, 2021, 21(8): 82-90. |
[6] | 刘忻, 杨浩睿, 郭振斌, 王家寅. 一种实现在线注册与权限分离的工业物联网身份认证协议[J]. 信息网络安全, 2021, 21(7): 1-9. |
[7] | 刘忻, 郭振斌, 宋宇宸. 一种基于SGX的工业物联网身份认证协议[J]. 信息网络安全, 2021, 21(6): 1-10. |
[8] | 刘璟, 张玉臣, 张红旗. 基于Q-Learning的自动入侵响应决策方法[J]. 信息网络安全, 2021, 21(6): 26-35. |
[9] | 王开轩, 滕亚均, 王琼霄, 王伟. 隐式证书的国密算法应用研究[J]. 信息网络安全, 2021, 21(5): 74-81. |
[10] | 李桐, 周小明, 任帅, 徐剑. 轻量化移动边缘计算双向认证协议[J]. 信息网络安全, 2021, 21(11): 58-64. |
[11] | 徐绘凯, 刘跃, 马振邦, 段海新. MQTT安全大规模测量研究[J]. 信息网络安全, 2020, 20(9): 37-41. |
[12] | 石润华, 石泽. 基于区块链技术的物联网密钥管理方案[J]. 信息网络安全, 2020, 20(8): 1-8. |
[13] | 丁举鹏, 易芝玲, 王劲涛, 阳辉. 可见光通信物理链路的基准保密容量比较研究[J]. 信息网络安全, 2020, 20(5): 65-71. |
[14] | 刘建伟, 韩祎然, 刘斌, 余北缘. 5G网络切片安全模型研究[J]. 信息网络安全, 2020, 20(4): 1-11. |
[15] | 陈璐, 孙亚杰, 张立强, 陈云. 物联网环境下基于DICE的设备度量方案[J]. 信息网络安全, 2020, 20(4): 21-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||