信息网络安全 ›› 2022, Vol. 22 ›› Issue (6): 44-52.doi: 10.3969/j.issn.1671-1122.2022.06.005

• 技术研究 • 上一篇    下一篇

基于强化学习的物联网安全资源分配方法

赵洪1,2, 李姗2, 左珮良2(), 魏占祯2   

  1. 1.中国科学技术大学,合肥 230026
    2.北京电子科技学院,北京 100070
  • 收稿日期:2022-02-21 出版日期:2022-06-10 发布日期:2022-06-30
  • 通讯作者: 左珮良 E-mail:zplzpl88@bupt.cn
  • 作者简介:赵洪(1978—),男,四川,博士研究生,主要研究方向为密码协议设计与分析、网络信息安全|李姗(1996—),女,河北,硕士研究生,主要研究方向为物联网、网络信息安全|左珮良(1991—),男,山东,讲师,博士,主要研究方向为物联网、软件定义网络、网络信息安全|魏占祯(1971—),男,青海,正高级工程师,硕士,主要研究方向为网络信息安全
  • 基金资助:
    国家自然科学基金(62001251);国家自然科学基金(62001252);国家重点研发计划(2018YFE0200600);北京高校高精尖学科建设项目(202100130401);西安电子科技大学综合业务网理论及关键技术国家重点实验室开放课题(ISN22-13)

Security Resource Allocation Method for Internet of Things Based on Reinforcement Learning

ZHAO Hong1,2, LI Shan2, ZUO Peiliang2(), WEI Zhanzhen2   

  1. 1. University of Science and Technology of China, Hefei 230026, China
    2. Beijing Electronic Science and Technology Institute, Beijing 100070, China
  • Received:2022-02-21 Online:2022-06-10 Published:2022-06-30
  • Contact: ZUO Peiliang E-mail:zplzpl88@bupt.cn

摘要:

雾计算作为一种分散式计算结构应用于物联网中,其固有的广播特性导致网络通信系统面临严重的安全威胁。同时,在动态变化的物联网环境中,无线资源的合理分配对减少通信服务时延至关重要。文章在存在不可信节点的前提下,对物联网安全资源分配问题进行研究,基于雾节点接收机具备同时同频全双工自干扰消除技术的假定,提出一种具有物理层安全特性的针对雾层无线资源的智能分配方法。该方法通过构建深度强化学习神经网络,设计合理的状态、动作和奖励等参数,实现物联网感知数据在安全保密防护条件下的快速上传。实验结果表明,该方法收敛速度较快,且在性能上明显优于对比方法。

关键词: 物联网, 强化学习, 资源分配, 物理层安全, 保密通信

Abstract:

As a decentralized computing structure, fog computing is applied in the Internet of things, and its inherent broadcast characteristics will make the network communication system to confront serious security threats. At the same time, in the dynamically changing fog Internet of things environment, the rational allocation of wireless resources is crucial to reduce the delay of communication services. Under the premise of the existence of untrusted nodes, this paper studies the security resource allocation problem of fog Internet of things. Based on the assumption that fog node receivers have simultaneous co-frequency full-duplex self-interference cancellation technology, a new method with physical layer security characteristics is proposed. It is an intelligent allocation method for radio resources in the fog layer. By constructing a deep reinforcement learning neural network and designing reasonable parameters such as state, action and reward, the method realizes the rapid upload of fog IoT perception data under the condition of security and confidentiality protection. The experimental results show that the method has a faster convergence speed and is significantly better than the comparison methods in performance.

Key words: Internet of things, reinforcement learning, resource allocation, physical layer security, secure communication

中图分类号: