信息网络安全 ›› 2021, Vol. 21 ›› Issue (6): 26-35.doi: 10.3969/j.issn.1671-1122.2021.06.004
收稿日期:
2021-01-21
出版日期:
2021-06-10
发布日期:
2021-07-01
通讯作者:
刘璟
E-mail:cybersecuritys@163.com
作者简介:
刘璟(1977—),女,河南,博士研究生,主要研究方向为态势感知|张玉臣(1977—),男,河南,教授,博士,主要研究方向为信息系统安全|张红旗(1962—),男,河北,教授,博士,主要研究方向为网络信息安全
基金资助:
LIU Jing*(), ZHANG Yuchen, ZHANG Hongqi
Received:
2021-01-21
Online:
2021-06-10
Published:
2021-07-01
Contact:
LIU Jing*
E-mail:cybersecuritys@163.com
摘要:
针对现有自动入侵响应决策自适应性差的问题,文章提出一种基于Q-Learning的自动入侵响应决策方法——Q-AIRD。Q-AIRD基于攻击图对网络攻防中的状态和动作进行形式化描述,通过引入攻击模式层识别不同能力的攻击者,从而做出有针对性的响应动作;针对入侵响应的特点,采用Softmax算法并通过引入安全阈值θ、稳定奖励因子μ和惩罚因子ν进行响应策略的选取;基于投票机制实现对策略的多响应目的评估,满足多响应目的的需求,在此基础上设计了基于Q-Learning的自动入侵响应决策算法。仿真实验表明,Q-AIRD具有很好的自适应性,能够实现及时、有效的入侵响应决策。
中图分类号:
刘璟, 张玉臣, 张红旗. 基于Q-Learning的自动入侵响应决策方法[J]. 信息网络安全, 2021, 21(6): 26-35.
LIU Jing*, ZHANG Yuchen, ZHANG Hongqi. Automatic Intrusion Response Decision-making Method Based on Q-Learning[J]. Netinfo Security, 2021, 21(6): 26-35.
表9
防御策略信息
$A({{s}_{2}})$ | $A({{s}_{3}})$ | $A({{s}_{4}})$ | $A({{s}_{5}})$ | $A({{s}_{6}})$ |
---|---|---|---|---|
${{a}_{1}}$ | ${{a}_{1}}$ | ${{a}_{1}}$ | ${{a}_{1}}$ | ${{a}_{1}}$ |
${{a}_{2}}$ | ${{a}_{2}}$ | ${{a}_{2}}$ | ${{a}_{3}}$ | ${{a}_{3}}$ |
${{a}_{4}}$ | ${{a}_{3}}$ | ${{a}_{3}}$ | ${{a}_{4}}$ | ${{a}_{5}}$ |
${{a}_{7}}$ | ${{a}_{4}}$ | ${{a}_{9}}$ | ${{a}_{5}}$ | ${{a}_{9}}$ |
${{a}_{8}}$ | ${{a}_{5}}$ | ${{a}_{6}}$ | ${{a}_{10}}$ | |
${{a}_{6}}$ | ${{a}_{10}}$ | ${{a}_{11}}$ |
[1] | ZHANG Hengwei, HUANG Shirui. Markov Differential Game Model and Its Application in Network Security[J]. Acta Electronica Sinica, 2019,47(3):606-612. |
张恒巍, 黄世锐. Markov 微分博弈模型及其在网络安全中的应用[J]. 电子学报, 2019,47(3):606-612. | |
[2] | QIAN Yaguan, LU Hongbo, JI Shouling, et al. A Poisoning Attack on Intrusion Detection System Based on SVM[J]. Acta Electronica Sinica, 2019,47(1):59-65. |
钱亚冠, 卢红波, 纪守领, 等. 一种针对基于 SVM 入侵检测系统的毒性攻击方法[J]. 电子学报, 2019,47(1):59-65. | |
[3] | SRINIVASAN T, SESHADRI J, JONATHAN J, et al. A System for Power-aware Agent-based Intrusion Detection (SPAID) in Wireless Ad Hoc Networks[J]. Lecture Notes in Computer Science, 2005,3619(4):153-162. |
[4] |
INAYAT Z, GANI A, ANUAR N B, et al. Intrusion Response Systems: Foundations, Design, and Challenges[J]. Journal of Network and Computer Applications, 2016,62(2):53-74.
doi: 10.1016/j.jnca.2015.12.006 URL |
[5] |
ANWAR S, ZAIN M J, ZOLKIPLI M F, et al. From Intrusion Detection to An Intrusion Response System: Fundamentals, Requirements, and Future Directions[J]. Algorithms, 2017,10(2):1-24.
doi: 10.3390/a10010001 URL |
[6] |
KHOLIDY H A, ERRADI A, ABDELWAHED S, et al. A Risk Mitigation Approach for Autonomous Cloud Intrusion Response System[J]. Computing, 2016,98(11):1111-1135.
doi: 10.1007/s00607-016-0495-8 URL |
[7] |
SHAMELI-SENDI A, LOUAFI H, HE Wenbo, et al. Dynamic Optimal Countermeasure Selection for Intrusion Response System[J]. IEEE Transactions on Dependable and Secure Computing, 2016,15(5):755-770.
doi: 10.1109/TDSC.8858 URL |
[8] |
WU Y S, FOO B R, MAO Yuchun, et al. Automated Adaptive Intrusion Containment in Systems of Interacting Services[J]. Computer Networks, 2007,51(5):1334-1360.
doi: 10.1016/j.comnet.2006.09.006 URL |
[9] | UPPULURI P, SEKAR R. Experiences with Specification-based Intrusion Detection[C]// Springer. International Symposium on Recent Advances in Intrusion Detection, October 10-12, 2001, Davis, CA, USA. Heidelberg: Springer, 2001: 172-189. |
[10] | SHI Jin, LU Yin, XIE Li. Dynamic Intrusion Response Based on Game Theory[J]. Journal of Computer Research and Development, 2008,45(5):747-757. |
石进, 陆音, 谢立. 基于博弈理论的动态入侵响应[J]. 计算机研究与发展, 2008,45(5):747-757. | |
[11] | SCHNACKENGERG D, HOLLIDAY H, SMITH R, et al. Cooperative Intrusion Traceback and Response Architecture (CITRA)[C]// IEEE. DARPA Information Survivability Conference & Exposition II, June 12-14, 2001, Anaheim, CA, USA. NJ: IEEE, 2001: 56-68. |
[12] |
NADEEM A, HOWARTH M P. An Intrusion Detection & Adaptive Response Mechanism for MANETs[J]. Ad Hoc Networks, 2014,13(2):368-380.
doi: 10.1016/j.adhoc.2013.08.017 URL |
[13] |
MU Chengpo, LI Yingjiu. An Intrusion Response Decision-making Model Based on Hierarchical Task Network Planning[J]. Expert Systems with Applications, 2010,37(3):2465-2472.
doi: 10.1016/j.eswa.2009.07.079 URL |
[14] | STAKHANOVA N, BASU S, WONG J. A Cost-sensitive Model for Preemptive Intrusion Response Systems[C]// IEEE. 21st International Conference on Advanced Information Networking and Applications, May 21-23, 2007, Niagara Falls, ON, Canada. NJ: IEEE, 2007: 428-435. |
[15] | HEI H, HOEGG C L, MCANDREW K, et al. It Rained What in Where? A Collaborative Approach to Improve Response and Remediation of Water Intrusions in Clinical Areas[J]. American Journal of Infection Control, 2020,48(8):27. |
[16] | CARVER C A. Adaptive Agent-based Intrusion Response[D]. College Station: Texas A&M University, 2001. |
[17] | HUTTER F, KOTTHOFF L, VANSCHOREN J. Automated Machine Learning: Methods, Systems, Challenges[M]. Heidelberg:Springer Nature, 2019. |
[18] | YE Yun, XU Xishan, QI Zhichang, et al. Attack Graph Generation Algorithm for Large-scale Network System[J]. Journal of Computer Research and Development, 2013,50(10):2133-2139. |
叶云, 徐锡山, 齐治昌, 等. 大规模网络中攻击图自动构建算法研究[J]. 计算机研究与发展, 2013,50(10):2133-2139. | |
[19] | WANG Shuo, TANG Guangming, KOU Guang, et al. Attack Path Prediction Method Based on Causal Knowledge Net[J]. Journal on Communications, 2016,37(10):188-198. |
王硕, 汤光明, 寇广, 等. 基于因果知识网络的攻击路径预测方法[J]. 通信学报, 2016,37(10):188-198. | |
[20] | GHOSAL S, AAD V. Fundamentals of Nonparametric Bayesian Inference[M]. Cambridge: Cambridge University Press, 2017. |
[21] | YANG Zhuoran, XIE Yuchen, WANG Zhaoran. A Theoretical Analysis of Deep Q-learning[EB/OL]. https://www.researchgate.net/publication/330102327_A_Theoretical_Analysis_of_Deep_Q-Learning , 2020-12-20. |
[1] | 刘忻, 郭振斌, 宋宇宸. 一种基于SGX的工业物联网身份认证协议[J]. 信息网络安全, 2021, 21(6): 1-10. |
[2] | 张正, 柳亚男, 王雷, 方旭明. 针对不规则网络的高精度和高效率的多跳定位算法[J]. 信息网络安全, 2021, 21(6): 11-18. |
[3] | 沈卓炜, 高鹏, 许心宇. 基于安全协商的DDS安全通信中间件设计[J]. 信息网络安全, 2021, 21(6): 19-25. |
[4] | 吴奕, 仲盛. 区块链共识算法Raft研究[J]. 信息网络安全, 2021, 21(6): 36-44. |
[5] | 李丹, 燕婷, 郭瑞. 基于交替量子漫步的量子彩色图像加密算法[J]. 信息网络安全, 2021, 21(6): 45-51. |
[6] | 徐国天, 沈耀童. 基于XGBoost与Stacking融合模型的恶意程序多分类检测方法[J]. 信息网络安全, 2021, 21(6): 52-62. |
[7] | 丁家伟, 刘晓栋. 基于ELECTRA-CRF的电信网络诈骗案件文本命名实体识别模型[J]. 信息网络安全, 2021, 21(6): 63-69. |
[8] | 范广宇, 王兴伟, 贾杰, 黄敏. SDN应用平面与控制平面安全交互方法[J]. 信息网络安全, 2021, 21(6): 70-79. |
[9] | 王超, 韩益亮, 段晓巍, 李鱼. 基于密钥封装机制的RLWE型认证密钥交换协议[J]. 信息网络安全, 2021, 21(6): 80-88. |
[10] | 宋玉龙, 王磊, 武欣嵘, 曾维军. 基于模拟退火自适应粒子群算法的WSN拓扑抗毁性方法研究[J]. 信息网络安全, 2021, 21(6): 89-96. |
[11] | 李鹏, 郑田甜, 徐鹤, 朱枫. 基于区块链技术的RFID安全认证协议[J]. 信息网络安全, 2021, 21(5): 1-11. |
[12] | 郑军, 聂榕, 王守信, 谭毓安. 基于Docker容器故障恢复的属性权重快照选择策略[J]. 信息网络安全, 2021, 21(5): 12-18. |
[13] | 周由胜, 钟天琦. 基于区块链的公平交换方案[J]. 信息网络安全, 2021, 21(5): 19-30. |
[14] | 吴驰, 帅俊岚, 龙涛, 于俊清. 基于Linux Shell命令的用户异常操作检测方法研究[J]. 信息网络安全, 2021, 21(5): 31-38. |
[15] | 顾兆军, 蔡畅, 王明. 基于改进保留格式加密的民航旅客数据脱敏方法[J]. 信息网络安全, 2021, 21(5): 39-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||